Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Termination reactions combination

The usual equations that are used to describe free radical chain polymerizations are not readily applicable to the polymerization of PTFE because the reaction does not meet the first requirement for application of the usual kinetic scheme, the steady state assumption [41, 42]. The CF2 radical has a very long lifetime, and usual termination reactions (combination and disproportionation] do not seem to occur. The need to have an extremely high molecular weight in order to have adequate physical properties requires a reaction system essentially free of any material that will chain transfer, eliminating that mode of termination. The result is that molecular weight of PTFE increases with time of polymerization, unlike most other radical-chain polymerizations. [Pg.270]

The assumption that k values are constant over the entire duration of the reaction breaks down for termination reactions in bulk polymerizations. Here, as in Sec. 5.2, we can consider the termination process—whether by combination or disproportionation to depend on the rates at which polymer molecules can diffuse into (characterized by kj) or out of (characterized by k ) the same solvent cage and the rate at which chemical reaction between them (characterized by kj.) occurs in that cage. In Chap. 5 we saw that two limiting cases of Eq. (5.8) could be readily identified ... [Pg.361]

To deal with the case of termination by combination, it is convenient to write some reactions by which an n-mer might be formed. Table 6.5 lists several specific chemical reactions and the corresponding rate expressions as well as the general form for the combination of an (n - m)-mer and an m-mer. On the assumption that all kj values are the same, we can write the total rate of change of [M -] ... [Pg.384]

In ionic polymerizations termination by combination does not occur, since all of the polymer ions have the same charge. In addition, there are solvents such as dioxane and tetrahydrofuran in which chain transfer reactions are unimportant for anionic polymers. Therefore it is possible for these reactions to continue without transfer or termination until all monomer has reacted. Evidence for this comes from the fact that the polymerization can be reactivated if a second batch of monomer is added after the initial reaction has gone to completion. In this case the molecular weight of the polymer increases, since no new growth centers are initiated. Because of this absence of termination, such polymers are called living polymers. [Pg.405]

Termination. The conversion of peroxy and alkyl radicals to nonradical species terminates the propagation reactions, thus decreasing the kinetic chain length. Termination reactions (eqs. 7 and 8) are significant when the oxygen concentration is very low, as in polymers with thick cross-sections where the oxidation rate is controlled by the diffusion of oxygen, or in a closed extmder. The combination of alkyl radicals (eq. 7) leads to cross-linking, which causes an undesirable increase in melt viscosity. [Pg.223]

In a simple free-radical-initiated addition polymerisation the principal reactions involved are (assuming termination by combination for simplicity)... [Pg.29]

Depending on the termination reaction of the vinyl monomer, termination by disproportionation or termination by combination occurs. As a result, AB or ABA block copolymers might be obtained. [Pg.732]

The tendency for radicals to give tail addition means that a head-to-head linkage will, most likely, be followed by a tail-to-tail linkage (Scheme 4.5). Thus, head-to-head linkages formed by an "abnormal" addition reaction are chemically distinct from those formed in termination by combination of propagating radicals (Scheme 4.6). [Pg.177]

Chains with uttdesired functionality from termination by combination or disproportionation cannot be totally avoided. Tn attempts to prepare a monofunctional polymer, any termination by combination will give rise to a difunctional impurity. Similarly, when a difunctional polymer is required, termination by disproportionation will yield a monofunctional impurity. The amount of termination by radical-radical reactions can be minimized by using the lowest practical rate of initiation (and of polymerization). Computer modeling has been used as a means of predicting the sources of chain ends during polymerization and examining their dependence on reaction conditions (Section 7.5.612 0 J The main limitations on accuracy are the precision of rate constants which characterize the polymerization. [Pg.377]

The chain carriers—radicals here—produced in these reactions can go on to attack other reactant molecules (H2 and Br2), thereby allowing the chain to continue. The elementary reaction that ends the chain, a process called termination, takes place when chain carriers combine to form products. Two examples of termination reactions are ... [Pg.674]

Reactions of free radicals either give stable products (termination reactions) or lead to other radicals, which themselves must usually react further (propagation reactions). The most common termination reactions are simple combinations of similar or different radicals ... [Pg.246]

In contrast to chain transfer, termination reactions destroy free radicals. Two mechanisms are considered. Termination by combination produces a single molecule of dead polymer ... [Pg.483]

If reactions other than those considered so far did not take place to an appreciable extent, the average degree of polymerization would be directly related to the kinetic chain length v. Assuming termination by combination of radicals, as is indicated by experiments previously cited, each polymer molecule formed in a monoradical-initiated polymerization would consist of two kinetic chains grown from two other-... [Pg.133]

The rate of copolymerization in a binary system depends not only on the rates of the four propagation steps but also on the rates of initiation and termination reactions. To simplify matters the rate of initiation may be made independent of the monomer composition by choosing an initiator which releases primary radicals that combine efficiently with either monomer. The spontaneous decomposition rate of the initiator should be substantially independent of the reaction medium, as otherwise the rate of initiation may vary with the monomer composition. 2-Azo-bis-isobutyronitrile meets these requirements satisfactorily. The rate Ri of initiation of chain radicals of both types Ml and M2 is then fixed and equal to 2//Cd[7], or twice the rate of decomposition of the initiator I if the efficiency / is equal to unity (see Chap. IV). The relative proportion of the two types of chain radicals created at the initiation step is of no real importance, for they wall be converted one into the other by the two cross-propagation reactions of the set (1). Melville, Noble, and Watson presented the first complete theory of copolymerization suitable for handling the problem of the rate. The theory was reduced to a more concise form by Walling, whose procedure is followed here. [Pg.199]

The pinacol formation reaction follows a radical mechanism. Benzopinacol, benzophenone and the mixed pinacol are formed jointly with many radical species [72, 74]. In the course of the reaction, first a high-energy excited state is generated with the aid of photons. Thereafter, this excited-state species reacts with a solvent molecule 2-propanol to give two respective radicals. The 2-propanol radical reacts with one molecule of benzophenone (in the ground state, without photon aid) to lengthen the radical chain. By combination of radicals, adducts are formed, including the desired product benzopinacol. Chain termination reactions quench the radicals by other paths. [Pg.550]

The three possible termination reactions have been written as combination reactions when, in fact, disproportionation reactions may also occur. Under a given set of experimental conditions, only one of the three chain breaking steps (4a), (4b), or (4c) can be expected to be important. [Pg.99]

More recently, a number of different copolymer structures have been prepared from butadiene and styrene, using modified organolithiums as polymerization initiators ( 4). Organolithium initiated polymerizations have gained prominence because stereo-control is combined with excellent polymerization rates, and the absence of a chain termination reaction facilitates control of molecular weights and molecular weight distributions ( 5). [Pg.74]

When the termination involves only combination, the polymerization gives a polymer with two initiator fragments at its chain ends. Because termination in the bulk polymerization of St with AIBN at a moderate temperature occurs by combination, the polymer obtained has two initiator fragments at both chain ends. In the radical polymerization of most monomers, however, termination by disproportionation and chain transfer reactions occur it is therefore impossible to control these termination reactions, i.e., the chain-end structure. Therefore, the number of initiator fragments per one molecule is always less than two. [Pg.79]

During conventional polymerizations of both HEMA and DEGDMA, complications resulting from diffusion limitations to termination and propagation are observed. Features such as autoacceleration, autodeceleration and incomplete conversion of double bonds characterize the rate behavior of these polymerizations. As TED is added to the reacting system, the carbon-DTC radical termination reaction is introduced. Diffusion limitations to carbon-DTC radical combination are lower than those to carbon-carbon radical termination as the DTC radical is smaller and much more mobile than a typical polymeric carbon radical. As a result, the cross-... [Pg.52]

It can be observed that the initial rate of polymerization decreases and the autoacceleration peak is suppressed as the TED concentration is increased. The TED molecules generate dithiocarbamyl (DTC) radicals upon initiation. As a result, termination may occur by carbon-carbon combination which leads to a dead polymer and by carbon-DTC radical reaction which produces a reinitiatable ( living ) polymer. The cross-termination of carbon-DTC radicals occurs early in the reaction (with the carbon-carbon radical termination), and this feature is observed by the suppression of the initial rate of polymerization. As the conversion increases, the viscosity of the system poses mass transfer limitations to the bimolecular termination of carbon radicals. As has been observed in Figure 3, this effect results in a decrease in the ktCC. However, as the DTC radicals are small and mobile, the crosstermination does not become diffusion limited, i.e., the kinetic constant for termination of carbon-DTC radicals, ktCS, does not decrease. Therefore, the crosstermination becomes the dominant reaction pathway. This leads to a suppression of the autoacceleration peak as the carbon-DTC radical termination limits the carbon radical concentration to a low value, thus limiting the rate of polymerization. This observation is in accordance with results of previous studies (10) with XDT and TED, where it was found that when there was an excess of DTC radicals, the carbon radical concentration was lower and the cross-termination reaction was the dominant termination pathway. [Pg.60]

From these experimental and modeling studies, the mechanism of the living free radical polymerizations initiated by a combination of TED and DMPA have been elucidated. The TED produces DTC radicals that preferentially cross-terminate with the propagating carbon radicals. By this cross-termination reaction, the carbon radical concentration is kept low (as was shown in figure 6) and the rate of polymerization is decreased, as is the autoacceleration effect. This suppression of the autoacceleration peak in HEM A polymerizations and, interestingly, in DEGDMA polymerization has been observed to increase as the TED concentrations are increased. This behavior has been predicted successfully by the model as well. [Pg.62]

There are also some hydroxyl groups formed by combination of the carbonium ion with the OH from the anion BF3OH in a termination reaction ... [Pg.50]

In the chain reaction the radical combines with oxygen to form a hydroperoxide (ROOH). This can itself break down to form two radicals (RO + OH ) which can combine further with oxygen. Thus the reaction, once started, continues to stimulate itself (i.e., it is auto-catalytic). In the termination reaction the hydroperoxide is de-activated. [Pg.29]

This second molecule might be a monomer, polymer, or solvent. Because of chain transfer the end of one polymer chain might be a hydrogen atom, and the beginning of the next the radical formed by removing the hydrogen atom from the solvent molecule. In the same paper, he proposed the two most probable chain termination reactions, mutual combination and disproportionation. [Pg.40]

The mechanistic issues to be discussed are the initiation modes of the reaction, the propagation mechanism, the perfect alternation of the polymerisation reaction, chain termination reactions, and the combined result of initiation and termination as a process of chain transfer. Where appropriate, the regio- and stereoselectivity should be discussed as well. A complete mechanistic picture cannot be given without a detailed study of the kinetics. The material published so far on the kinetics comprises only work carried out at temperatures of -82 to 25 °C, which is well below the temperature of the catalytic process. [Pg.241]


See other pages where Termination reactions combination is mentioned: [Pg.221]    [Pg.221]    [Pg.525]    [Pg.653]    [Pg.221]    [Pg.221]    [Pg.525]    [Pg.653]    [Pg.436]    [Pg.30]    [Pg.258]    [Pg.373]    [Pg.375]    [Pg.414]    [Pg.453]    [Pg.628]    [Pg.248]    [Pg.52]    [Pg.488]    [Pg.127]    [Pg.159]    [Pg.17]    [Pg.38]    [Pg.58]    [Pg.179]    [Pg.685]    [Pg.51]    [Pg.96]    [Pg.531]    [Pg.146]   
See also in sourсe #XX -- [ Pg.250 ]




SEARCH



Combination termination

Combined reactions

Reaction terminating

Reaction, terminal

Termination reaction

© 2024 chempedia.info