Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Terminal Cross Metathesis

Terminal cross metathesis (TC) I Sacrificial diblock copolymer... [Pg.46]

The terminal cross metathesis (CM) reaction, as depicted in Figure 3.5, is probably the most straightforward synthetic method to introduce complex molecular fragments or functional groups to a ROMP polymer chain end. The propagating ruthenium carbene complex typically reacts with an acyclic olefin in a CM reaction. The newly generated carbene complex is still metathesis-active, and can in principle undergo secondary metathesis reactions or initiate the polymerization of the residual monomer. [Pg.48]

The reversible nature of cross metathesis is of synthetic importance because, by the use of a sufficiently active metathesis catalyst, it generally ensures the preferential formation of the most thermodynamically stable product. This results in the transformation of terminal olefins into internal ones, and we have seen that undesired self-metathesis products can be recycled by exposing them to a second CM process. [Pg.337]

A year later, Schrock confirmed that the cross-metathesis of two alkyl-substituted terminal alkenes could also be catalysed by his molybdenum catalyst [26] (Eq. 9). [Pg.170]

The success of the cross-metathesis reactions involving styrene and acrylonitrile led to an investigation into the reactivity of other Ji-substituted terminal alkenes [27]. Vinylboranes, enones, dienes, enynes and a,p-unsaturated esters were tested, but all of these substrates failed to undergo the desired cross-metathesis reaction using the molybdenum catalyst. [Pg.171]

In 1995 the first examples of ring-opening cross-metathesis reactions for the preparation of functionalised monomeric products using the Grubbs ruthenium vinylalkylidene catalyst 4 were published by Snapper and co-workers [47]. Reaction of a variety of symmetrical cyclobutenes with simple terminal alkenes... [Pg.182]

A subsequent publication by Blechert and co-workers demonstrated that the molybdenum alkylidene 3 and the ruthenium benzylidene 17 were also active catalysts for ring-opening cross-metathesis reactions [50]. Norbornene and 7-oxanorbornene derivatives underwent selective ring-opening cross-metathesis with a variety of terminal acyclic alkenes including acrylonitrile, an allylsilane, an allyl stannane and allyl cyanide (for example Eq. 34). [Pg.185]

Reaction of this same cyclobutene substrate 48 with a terminal alkene (TB-DMS protected pent-4-en-l-ol) gave a good yield (84%) of the cross-metathesis products, but with very little regioselectivity (3 2 mixture of regioisomers). [Pg.186]

Tebbe and co-workers reported the first olefin metatheses between titanocene-methyli-dene and simple terminal olefins [13]. They showed cross-metathesis between isotopically labeled isobutene and methylenecyclohexane to be catalyzed by titanocene-methylidene. This process is referred to as degenerate olefm metathesis as it does not yield any new olefin (Scheme 14.6). The intermediate titanacyclobutane has been isolated and characterized [14], and its stability [15] and mechanism of rearrangement [16] have been investigated. [Pg.477]

Scheme 2. Catalytic cross-metathesis binding of terminal alkenes (A) and alkynes (B) to allyldimethylsilyl polystyrene. Scheme 2. Catalytic cross-metathesis binding of terminal alkenes (A) and alkynes (B) to allyldimethylsilyl polystyrene.
Only recently a selective crossed metathesis between terminal alkenes and terminal alkynes has been described using the same catalyst.6 Allyltrimethylsilane proved to be a suitable alkene component for this reaction. Therefore, the concept of immobilizing terminal olefins onto polymer-supported allylsilane was extended to the binding of terminal alkynes. A series of structurally diverse terminal alkynes was reacted with 1 in the presence of catalytic amounts of Ru.7 The resulting polymer-bound dienes 3 are subject to protodesilylation (1.5% TFA) via a conjugate mechanism resulting in the formation of products of type 6 (Table 13.3). Mixtures of E- and Z-isomers (E/Z = 8 1 -1 1) are formed. The identity of the dominating E-isomer was established by NOE analysis. [Pg.146]

The treatment of equivalent amounts of two different alkenes with a metathesis catalyst generally leads to the formation of complex product mixtures [925,926]. There are, however, several ways in which cross metathesis can be rendered synthetically useful. One example of an industrial application of cross metathesis is the ethenolysis of internal alkenes. In this process cyclic or linear olefins are treated with ethylene at 50 bar/20 80 °C in the presence of a heterogeneous metathesis catalyst. The reverse reaction of ADMET/RCM occurs, and terminal alkenes are obtained. [Pg.161]

Much more challenging is the targetted introduction of carbon substituents at terminal olefins by means of cross metathesis. Because of the mild reaction conditions under which alkene metathesis proceeds, cross metathesis could become an extremely valuable tool for the synthetic chemist if the critical parameters for productive cross metathesis between different, functionalized olefins were understood. [Pg.161]

One special case of cross metathesis is ring-opening cross metathesis. When strained, cyclic alkenes (but not cyclopropenes [818]) are treated with a catalytically active carbene complex in the presence of an alkene, no ROMP but only the formation of monomeric cross-metathesis product is observed [818,937], The reaction, which works best with terminal alkenes, must be interrupted when the strained cycloalkene is consumed, to avoid further equilibration. As illustrated by the examples in Table 3.22, high yields and regioselectivities can be achieved with this interesting methodology. [Pg.168]

The cross-metathesis of terminal alkenes and functionalized alkenes is shown in Table 6.2. In each case, a CM product is obtained in high yield and an -isomer is formed predominantly. ... [Pg.167]

Cross-metathesis of terminal alkyne 142 and cyclopentene gives cyclic compound 143 having a diene moiety [Eq. (6.114)]. ° Terminal ruthenium carbene generated from an alkyne and methylidene ruthenium carbene complex reacts with cyclopentene to afford two-carbon elongated cycloheptadiene 143 ... [Pg.195]

Cross-metathesis, however, is usually a nonselective reaction. Transformation of two terminal alkenes in the presence of a metathesis catalyst, for instance, can give six possible products (three pairs of cis/trans isomers) since self-metathesis of each alkene and cross-metathesis occur in parallel. It has been observed, however, that terminal olefins when cross-metathesized with styrene yield trans-P-alkylstyrenes with high selectivity.5 A useful synthetic application of cross-metathesis is the cleavage of internal alkenes with ethylene called ethenolysis to yield terminal olefins ... [Pg.697]

The trend of structural selectivity can be summarized as degenerate metathesis of terminal alkenes (exchange of methylene groups) > cross-metathesis of terminal and internal alkenes > metathesis of internal alkenes > productive metathesis of terminal alkenes (formation of internal alkene and ethylene).87 Since different catalyst systems exhibit different selectivities, a simple general picture accounting for all stereochemical phenomena of metathesis is not feasible. [Pg.704]

After successful completion of all rearrangement reactions, the incorporation of the different side chains of the tetraponerines was attempted by employing a cross metathesis reaction. However, the cross metathesis of 19 and 22 with allyltrimethylsilane in the presence of 10% [Ru-1] was unsuccessful due to the formation of a carbene with low reactivity. The use of Schrock s molybdenum catalyst26 [Mo] (Figure 7) also failed to show any conversion. The terminal double bonds of 19 and 22 were assumed to be too hindered for cross metathesis. An alternative route to incorporate the different alkyl chains of the tetraponerines was necessary (Scheme 8). [Pg.326]

C-E bond formation via hydroalumination, 10, 859 C-E bond formation via hydroboration, 10, 842 olefin cross-metathesis, 11, 195 terminal acetylene silylformylation, 11, 478 Chemspeed automated synthesizer, for high-throughput catalyst preparation, 1, 356 Chini complexes, characteristics, 8, 410 Chiral bisphosphanes, in hydrogenations on DIOP modification, 10, 7... [Pg.81]

Cross-metathesis of two different alkenes 11 and 42 usually produces a mixture of products 6 and 15. However, depending on the functional groups R1 and R2, the cross-product 6 is obtained with high selectivity rather than the homoproduct 15 from 11 and 42. Some terminal alkenes, such as allylstannane [16], acrylonitrile [17,18] and allylsilane [19], undergo clean cross-metathesis to give cross-products 6 as the main product, rather than homoproducts 15. Cross-metathesis of the cyclic alkenes 43 with terminal alkenes 42 can be used for the synthesis of dienes 44. [Pg.311]

A very useful cross-metathesis is the reaction involving ethylene, which is called ethenolysis. Reaction of ethylene with internal alkenes produces the more useful terminal alkenes. Two terminal alkenes 45 and 42 are formed from the unsymmetric alkene 6 and ethylene. The symmetric alkenes 11 are converted to single terminal alkenes 45. The terminal dienes 46 are formed by ethenolysis of the cyclic alkenes 43. [Pg.311]

Cross-metathesis using terminal alkenes or ethylene... [Pg.313]

Strained rings may be opened by a ruthenium carbene-catalyzed reaction with a second alkene following the mechanism of the Cross Metathesis. The driving force is the relief of ring strain. As the products contain terminal vinyl groups, further reactions of the Cross Metathesis variety may occur. Therefore, the reaction conditions must be optimized to favour the desired product. [Pg.197]

The functionalization of SAMs via ruthenium-catalyzed cross metathesis of vinyl-terminated SAMs has been reported by Lee et al.76 to install a variety of acrylic derivatives on SAMs bearing vinyl groups on their outer surface. The major drawback of this approach is the intra-SAM metathesis which causes the formation of a mixture of surface-bound products, limiting the reproducibility of the method. The formation of urethanes by the reaction of diisocyanates77 or isothiocyanates78 with hydroxyl- and amino-terminated SAMs has been reported as well. The reaction of hydroxyl-terminated SAMs with diisocyanates, allowed the preparation of isocyanate SAMs that proved to be reactive towards amines, alcohols, and water, displaying the standard chemistry of the isocyanate groups.77... [Pg.125]

Ruthenium-catalyzed olefin cross-metathesis (ring-closing metathesis, RGM) between terminal alkenes and vinyl-boronic acid or esters has recently been developed for the synthesis of ( )-l-alkenylboron compounds from alkenes.459,460 The efficiency of protocol was proved in the synthesis of a key intermediate of epothilone 490 292 461 (Equation (84)). The vinyl boronate was given almost exclusively the trans-adduct. [Pg.183]

The intermolecular enyne cross metathesis, and consecutive RCM, between a terminal alkyne and 1,5-hexadiene produces cyclohexadienes, by cascade CM-RCM reaction, and trienes, formed during the sole CM step. Studies of various parameters of the reaction conditions did not show any improvement of the ratio of desired cyclohexadiene product [25] (Scheme 12). The reaction with cyclopentene instead of hexadiene as the alkene leads to 2-substituted-l,3-cycloheptadienes [26]. After the first cyclopentene ROM, the enyne metathesis is favored rather than ROMP by an appropriate balance between cycloalkene ring strain and reactivity of the alkyne. [Pg.301]


See other pages where Terminal Cross Metathesis is mentioned: [Pg.46]    [Pg.48]    [Pg.46]    [Pg.48]    [Pg.219]    [Pg.168]    [Pg.186]    [Pg.145]    [Pg.137]    [Pg.193]    [Pg.816]    [Pg.179]    [Pg.632]    [Pg.697]    [Pg.128]    [Pg.1840]    [Pg.1500]    [Pg.346]    [Pg.171]    [Pg.136]    [Pg.199]   


SEARCH



Cross metathesis

Cross termination

© 2024 chempedia.info