Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature viscoelastic behavior

A variety of commercial instruments are available for the determination of the viscoelastic behavior of samples. Figure 3.15 shows one such apparatus, the Rheovibron Viscoelastometer. This instrument also takes advantage of the complementarity that exists between time and temperature It operates at four frequencies over a 175°C temperature range. With accessories, both the frequency range and the temperature range can be broadened still further. [Pg.179]

These normal stresses are more pronounced for polymers with a very broad molecular weight distribution. Viscosities and viscoelastic behavior decrease with increasing temperature. In some cases a marked viscosity decrease with time is observed in solutions stored at constant temperature and 2ero shear. The decrease may be due to changes in polymer conformation. The rheological behavior of pure polyacrylamides over wide concentration ranges has been reviewed (5). [Pg.140]

For those not familiar with this type information recognize that the viscoelastic behavior of plastics shows that their deformations are dependent on such factors as the time under load and temperature conditions. Therefore, when structural (load bearing) plastic products are to be designed, it must be remembered that the standard equations that have been historically available for designing steel springs, beams, plates, cylinders, etc. have all been derived under the assumptions that (1) the strains are small, (2) the modulus is constant, (3) the strains are independent of the loading rate or history and are immediately reversible, (4) the material is isotropic, and (5) the material behaves in the same way in tension and compression. [Pg.40]

In this approach the reviews concerned the rheology involving the linear viscoelastic behavior of plastics and how such behavior is affected by temperature. Next is to extend this knowledge to the complex behavior of crystalline plastics, and finally illustrate how experimental data were applied to a practical example of the long-time mechanical stability. [Pg.42]

Different viscoelastic materials may have considerably different creep behavior at the same temperature. A given viscoelastic material may have considerably different creep behavior at different temperatures. Viscoelastic creep data are necessary and extremely important in designing products that must bear long-term loads. It is inappropriate to use an instantaneous (short load) modulus of elasticity to design such structures because they do not reflect the effects of creep. Viscoelastic creep modulus, on the other hand, allows one to estimate the total material strain that will result from a given applied stress acting for a given time at the anticipated use temperature of the structure. [Pg.64]

It is clear that this data treatment is strictly valid providing the tested material exhibits linear viscoelastic behavior, i.e., that the measured torque remains always proportional to the applied strain. In other words, when the applied strain is sinusoidal, so must remain the measured torque. The RPA built-in data treatment does not check this y(o )/S (o)) proportionality but a strain sweep test is the usual manner to verify the strain amplitude range for constant complex torque reading at fixed frequency (and constant temperature). [Pg.820]

Contrary to the phase separation curve, the sol/gel transition is very sensitive to the temperature more cations are required to get a gel phase when the temperature increases and thus the extension of the gel phase decreases [8]. The sol/gel transition as determined above is well reproducible but overestimates the real amount of cation at the transition. Gelation is a transition from liquid to solid during which the polymeric systems suffers dramatic modifications on their macroscopic viscoelastic behavior. The whole phenomenon can be thus followed by the evolution of the mechanical properties through dynamic experiments. The behaviour of the complex shear modulus G (o)) reflects the distribution of the relaxation time of the growing clusters. At the gel point the broad distribution of... [Pg.41]

The dynamic viscoelasticity of particulate gels of silicone gel and lightly doped poly-p-phenylene (PPP) particles has been studied under ac excitation [55]. The influence of the dielectric constant of the PPP particles has been investigated in detail. It is well known that the dielectric constant varies with the frequency of the applied field, the content of doping, or the measured temperature. In Fig. 11 is displayed the relationship between an increase in shear modulus induced by ac excitation of 0.4kV/mm and the dielectric constant of PPP particles, which was varied by changing the frequency of the applied field. AG increases with s2 and then reaches a constant value. Although the composite gel of PPP particles has dc conductivity, the viscoelastic behavior of the gel in an electric field is qualitatively explained by the model in Sect. 4.2.1, in which the effect of dc conductivity is neglected. [Pg.155]

Rheological Properties Measurements. The viscoelastic behavior of the UHMWPE gel-like systems was studied using the Rheometric Mechanical Spectrometer (RMS 705). A cone and plate fixture (radius 1.25 cm cone angle 9.85 x 10" radian) was used for the dynamic frequency sweep, and the steady state shear rate sweep measurements. In order to minimize the error caused by gap thickness change during the temperature sweep, the parallel plates fixture (radius 1.25 cm gap 1.5 mm) was used for the dynamic temperature sweep measurements. [Pg.23]

Polymers are viscoelastic materials meaning they can act as liquids, the visco portion, and as solids, the elastic portion. Descriptions of the viscoelastic properties of materials generally falls within the area called rheology. Determination of the viscoelastic behavior of materials generally occurs through stress-strain and related measurements. Whether a material behaves as a viscous or elastic material depends on temperature, the particular polymer and its prior treatment, polymer structure, and the particular measurement or conditions applied to the material. The particular property demonstrated by a material under given conditions allows polymers to act as solid or viscous liquids, as plastics, elastomers, or fibers, etc. This chapter deals with the viscoelastic properties of polymers. [Pg.459]

Dynamic mechanical analysis (DMA) or dynamic mechanical thermal analysis (DMTA) provides a method for determining elastic and loss moduli of polymers as a function of temperature, frequency or time, or both [1-13]. Viscoelasticity describes the time-dependent mechanical properties of polymers, which in limiting cases can behave as either elastic solids or viscous liquids (Fig. 23.2). Knowledge of the viscoelastic behavior of polymers and its relation to molecular structure is essential in the understanding of both processing and end-use properties. [Pg.198]

Dynamic mechanical experiments yield both the elastic modulus of the material and its mechanical damping, or energy dissipation, characteristics. These properties can be determined as a function of frequency (time) and temperature. Application of the time-temperature equivalence principle [1-3] yields master curves like those in Fig. 23.2. The five regions described in the curve are typical of polymer viscoelastic behavior. [Pg.198]

In 97- it was also shown on the basis of dilatometric data that the free-volume of PMMA in the mixture with polyvinylacetate increases with the increase in FVA concentration. In 98) a large difference was reported in the viscoelastic behavior of block copolymer from that predicted by WLF theory. This theory is believed to be useful only near the Te of each component, not in the broad temperature interval including the transition from glassy to rubberlike state. This anomaly is thought to be connected with certain motions in the interphase regions, which should be looked upon as independent components of the mixture. [Pg.98]

Real world materials are not simple liquids or solids but are complex systems that can exhibit both liquid-like and solid-like behavior. This mixed response is known as viscoelasticity. Often the apparent dominance of elasticity or viscosity in a sample will be affected by the temperature or the time period of testing. Flow tests can derive viscosity values for complex fluids, but they shed light upon an elastic response only if a measure is made of normal stresses generated during shear. Creep tests can derive the contribution of elasticity in a sample response, and such tests are used in conjunction with dynamic testing to quantity viscoelastic behavior. [Pg.1195]

Fig. 25 Viscoelastic behavior of a semi-dilute solution of DNA. Elastic modulus (G, filled symbols) and viscous modulus (G", open symbols) are plotted, together with their ratio G"IG = tan 5 (solid curve), for a 93 mg/mL DNA solution subjected to a heating-cooling cycle. The entanglement of DNA helices and, at high temperature, of single strands causes the almost monotonous increase of the dynamic moduli. Reproduced with permission from [110]... Fig. 25 Viscoelastic behavior of a semi-dilute solution of DNA. Elastic modulus (G, filled symbols) and viscous modulus (G", open symbols) are plotted, together with their ratio G"IG = tan 5 (solid curve), for a 93 mg/mL DNA solution subjected to a heating-cooling cycle. The entanglement of DNA helices and, at high temperature, of single strands causes the almost monotonous increase of the dynamic moduli. Reproduced with permission from [110]...
Summary In this chapter, a discussion of the viscoelastic properties of selected polymeric materials is performed. The basic concepts of viscoelasticity, dealing with the fact that polymers above glass-transition temperature exhibit high entropic elasticity, are described at beginner level. The analysis of stress-strain for some polymeric materials is shortly described. Dielectric and dynamic mechanical behavior of aliphatic, cyclic saturated and aromatic substituted poly(methacrylate)s is well explained. An interesting approach of the relaxational processes is presented under the experience of the authors in these polymeric systems. The viscoelastic behavior of poly(itaconate)s with mono- and disubstitutions and the effect of the substituents and the functional groups is extensively discussed. The behavior of viscoelastic behavior of different poly(thiocarbonate)s is also analyzed. [Pg.43]

Mechanical and viscoelastic behaviour of materials can be determined by different kind of instrumental techniques. Broadband viscoelastic spectroscopy (BVS) and resonant ultrasound spectroscopy (RUS) are more commonly used to test viscoelastic behavior because they can be used above and below room temperatures and are more specific to testing viscoelasticity. These two instruments employ a damping mechanism at various frequencies and time ranges with no appeal to time-temperature superposition. Using BVS and RUS to study the mechanical properties of materials is important to understanding how a material exhibiting viscoelasticity will perform. [Pg.60]


See other pages where Temperature viscoelastic behavior is mentioned: [Pg.461]    [Pg.486]    [Pg.461]    [Pg.486]    [Pg.312]    [Pg.151]    [Pg.192]    [Pg.86]    [Pg.89]    [Pg.14]    [Pg.42]    [Pg.846]    [Pg.446]    [Pg.452]    [Pg.173]    [Pg.22]    [Pg.22]    [Pg.26]    [Pg.31]    [Pg.31]    [Pg.470]    [Pg.45]    [Pg.192]    [Pg.7]    [Pg.100]    [Pg.95]    [Pg.283]    [Pg.128]    [Pg.273]    [Pg.151]    [Pg.1138]    [Pg.1204]    [Pg.182]    [Pg.59]   
See also in sourсe #XX -- [ Pg.220 , Pg.220 ]




SEARCH



Temperature behavior

Viscoelastic behavior

Viscoelastic behavior viscoelasticity

Viscoelasticity behavior

© 2024 chempedia.info