Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature overview

We realized an Eddy current SQUID system of the high frequency type a room temperature Eddy current probe is connected to a SQUID sensor at hquid nitrogen temperature. Fig.3 gives an overview over the components of the system, fig, 5 shows a schematic diagram of the electronics. [Pg.300]

In this brief review of dynamics in condensed phases, we have considered dense systems in various situations. First, we considered systems in equilibrium and gave an overview of how the space-time correlations, arising from the themial fluctuations of slowly varying physical variables like density, can be computed and experimentally probed. We also considered capillary waves in an inliomogeneous system with a planar interface for two cases an equilibrium system and a NESS system under a small temperature gradient. [Pg.756]

Fig. 3. Overview of puriftcation sequence for the nonrecombinant tissue plasminogen activator (t-PA) which also contains urokinase plasminogen activator (u-PA). Serum-free culture conditional media is from normal human ceU line. The temperature for aU. steps, except for size-exclusion chromatography... Fig. 3. Overview of puriftcation sequence for the nonrecombinant tissue plasminogen activator (t-PA) which also contains urokinase plasminogen activator (u-PA). Serum-free culture conditional media is from normal human ceU line. The temperature for aU. steps, except for size-exclusion chromatography...
Fig. 3. An overview of atomistic mechanisms involved in electroceramic components and the corresponding uses (a) ferroelectric domains capacitors and piezoelectrics, PTC thermistors (b) electronic conduction NTC thermistor (c) insulators and substrates (d) surface conduction humidity sensors (e) ferrimagnetic domains ferrite hard and soft magnets, magnetic tape (f) metal—semiconductor transition critical temperature NTC thermistor (g) ionic conduction gas sensors and batteries and (h) grain boundary phenomena varistors, boundary layer capacitors, PTC thermistors. Fig. 3. An overview of atomistic mechanisms involved in electroceramic components and the corresponding uses (a) ferroelectric domains capacitors and piezoelectrics, PTC thermistors (b) electronic conduction NTC thermistor (c) insulators and substrates (d) surface conduction humidity sensors (e) ferrimagnetic domains ferrite hard and soft magnets, magnetic tape (f) metal—semiconductor transition critical temperature NTC thermistor (g) ionic conduction gas sensors and batteries and (h) grain boundary phenomena varistors, boundary layer capacitors, PTC thermistors.
In order to operate a process facility in a safe and efficient manner, it is essential to be able to control the process at a desired state or sequence of states. This goal is usually achieved by implementing control strategies on a broad array of hardware and software. The state of a process is characterized by specific values for a relevant set of variables, eg, temperatures, flows, pressures, compositions, etc. Both external and internal conditions, classified as uncontrollable or controllable, affect the state. Controllable conditions may be further classified as controlled, manipulated, or not controlled. Excellent overviews of the basic concepts of process control are available (1 6). [Pg.60]

A more simplified description is a unit that combusts materials in the presence of oxygen at temperatures normally ranging from 800 to 1650°C. A typical configuration of an incinerator is shown in Figure 9. Typical types of incineration units that are discussed herein are catalytic oxidation, fluidized beds, hquid injection, multiple hearth furnaces, and rotary kiln. Thermal desorption is also discussed. However, an overview of the main factors affecting incinerator performance is presented first, below. [Pg.168]

Dehydrogenation of isobutane to isobutylene is highly endothermic and the reactions are conducted at high temperatures (535—650°C) so the fuel consumption is sizeable. Eor the catalytic processes, the product separation section requires a compressor to facHitate the separation of hydrogen, methane, and other light hydrocarbons from-the paraffinic raw material and the olefinic product. An exceHent overview of butylenes is avaHable (81). [Pg.368]

The subject of thermochromism in organic and polymeric compounds has been reviewed in some depth previously (8,16,18), and these expansive overviews should be used by readers with deeper and more particular interest in the subject. Many more examples can be found in the reviews that further illustrate the pattern of association between thermochromism and molecular restmcturing of one kind or another. The specific assignment of stmctures is still Open to debate in many cases, and there are still not many actual commercial uses for these or any of the other thermally reversible materials discussed herein. Temperature indicators have been mentioned, though perhaps as much or more for irreversible materials. [Pg.171]

Overview One of the most important considerations involved in designing gas-absorption towers is to determine whether or not temperatures will vaiy along the length of the tower because of heat effects, since the sohibility of the solute gas normally depends strongly upon the temperature. When heat effects can be neglected, computation of the tower dimensions and required flows is relatively straight-... [Pg.1358]

Mixing Cell Calorimetry (MCC) The MCC provides information regarding the instantaneous temperature rise resulting from the mixing of two compounds. Together, DSC and MCC provide a reliable overview of the thermal events that may occur in the process. [Pg.2312]

A brief overview of the form for rate equations reveals that temperature and concentration e Tects are strongly interwoven. This is so even if all four basic steps in the rules of Boudart (1968) are obeyed for the elementary steps. The expectations of simple unchanging temperature effects and strict even-numbered gas concentration dependencies of rate are not justified. [Pg.219]

The procedures of measuring changes in some physical or mechanical property as a sample is heated, or alternatively as it is held at constant temperature, constitute the family of thermoanalytical methods of characterisation. A partial list of these procedures is differential thermal analysis, differential scanning calorimetry, dilatometry, thermogravimetry. A detailed overview of these and several related techniques is by Gallagher (1992). [Pg.240]

As remarked above, surface science has come to be partitioned between chemists, physicists and materials scientists. Physicists have played a substantial role, and an excellent early overview of surface science from a physicist s perspective is by Tabor (1981). An example of a surface parepisteme that has been entirely driven by physicists is the study of the roughening transition. Above a critical temperature but... [Pg.408]

Additionally, the shape of the deviation will prompt the operator to search for more detailed information upon which to act. An example of a process deviation as represented by an asymmetrical display might be the low flow of crude through the coils due to a blockage. This may be represented by a decrease in crude supply and fuel supply and an increase in inlet temperature. This type of overview display has the following advantages ... [Pg.334]

Catalytic hydrogenation is typically carried out in slurry reactors, where finely dispersed catalyst particles (<100 (tm) are immersed in a dispersion of gas and liquid. It has, however, been demonstrated that continuous operation is possible, either by using trickle bed [24] or monoHth technologies [37]. Elevated pressures and temperatures are needed to have a high enough reaction rate. On the other hand, too high a temperature impairs the selectivity of the desired product, as has been demonstrated by Kuusisto et al. [23]. An overview of some feasible processes and catalysts is shown in Table 8.1. [Pg.176]

Fig. 4.13 Schematic overview of the appearance of the modifications of Prl2 with increasing temperature. Fig. 4.13 Schematic overview of the appearance of the modifications of Prl2 with increasing temperature.
Sol-gel techniques have been widely used to prepare ceramic or glass materials with controlled microstructures. Applications of the sol-gel method in fabrication of high-temperature fuel cells are steadily reported. Modification of electrodes, electrolytes or electrolyte/electrode interface of the fuel cell has been also performed to produce components with improved microstructures. Recently, the sol-gel method has expanded into inorganic-organic hybrid membranes for low-temperature fuel cells. This paper presents an overview concerning current applications of sol-gel techniques in fabrication of fuel cell components. [Pg.77]


See other pages where Temperature overview is mentioned: [Pg.162]    [Pg.1240]    [Pg.213]    [Pg.391]    [Pg.179]    [Pg.179]    [Pg.181]    [Pg.27]    [Pg.516]    [Pg.30]    [Pg.253]    [Pg.277]    [Pg.278]    [Pg.279]    [Pg.289]    [Pg.384]    [Pg.433]    [Pg.442]    [Pg.359]    [Pg.367]    [Pg.4]    [Pg.60]    [Pg.637]    [Pg.303]    [Pg.516]    [Pg.13]    [Pg.45]    [Pg.83]    [Pg.87]    [Pg.97]    [Pg.189]   
See also in sourсe #XX -- [ Pg.161 , Pg.162 , Pg.163 , Pg.219 , Pg.220 ]




SEARCH



High temperature overview

High-temperature superconductivity in layered cuprates overview

High-temperature superconductivity overview

Overview of Intermediate-Temperature Solid Oxide Fuel Cells

Overview temperature dependence

Superconductivity high-temperature layered cuprates: overview

© 2024 chempedia.info