Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tautomerization kinetics

Tautomerism Kinetic vs. Thermodynamic Stability Protonation Sites in Conjugated Molecules N/N Alternatives. ... [Pg.267]

The depolarization of fluorescence has been observed at temperatures around 100 K not only for 1, but also for the two derivatives, lb and Ic. in contrast, the measurements performed under the same conditions for le revealed no sign of depolarization. The textbook values of the anisotropy were obtained, i.e. 0.4 and about -0.2 for excitation into Sj and S2, respectively (Fig. 8.11). The octaethyl derivative le is the porphycene with the largest separation (2.80 A) between the hydrogen-bonded nitrogen atoms and should therefore exhibit the slowest tautomerization kinetics. It was thus concluded that the reduced anisotropy values observed in three different porphycenes are caused by excited state tautomerization [30, 80]. As shown in Fig. 8.12, the interconversion between the two trans tautomers changes the direction of the transition moment. Therefore, only a part of the excited state population emits fluorescence polarized parallel to that of the transition moment in Sg-Sj absorption (this fraction should approach 0.5 if the tautomerization is fast compared to the excited state lifetime). For the remaining frac-... [Pg.259]

Fast transient studies are largely focused on elementary kinetic processes in atoms and molecules, i.e., on unimolecular and bimolecular reactions with first and second order kinetics, respectively (although confonnational heterogeneity in macromolecules may lead to the observation of more complicated unimolecular kinetics). Examples of fast thennally activated unimolecular processes include dissociation reactions in molecules as simple as diatomics, and isomerization and tautomerization reactions in polyatomic molecules. A very rough estimate of the minimum time scale required for an elementary unimolecular reaction may be obtained from the Arrhenius expression for the reaction rate constant, k = A. The quantity /cg T//i from transition state theory provides... [Pg.2947]

The ketone is added to a large excess of a strong base at low temperature, usually LDA in THF at -78 °C. The more acidic and less sterically hindered proton is removed in a kineti-cally controlled reaction. The equilibrium with a thermodynamically more stable enolate (generally the one which is more stabilized by substituents) is only reached very slowly (H.O. House, 1977), and the kinetic enolates may be trapped and isolated as silyl enol ethers (J.K. Rasmussen, 1977 H.O. House, 1969). If, on the other hand, a weak acid is added to the solution, e.g. an excess of the non-ionized ketone or a non-nucleophilic alcohol such as cert-butanol, then the tautomeric enolate is preferentially formed (stabilized mostly by hyperconjugation effects). The rate of approach to equilibrium is particularly slow with lithium as the counterion and much faster with potassium or sodium. [Pg.11]

From a general point of view, the tautomeric studies can be divided into 12 areas (Figure 20) depending on the migrating entity (proton or other groups, alkyl, acyl, metals. ..), the physical state of the study (solid, solution or gas phase) and the thermodynamic (equilibrium constants) or the kinetic (isomerization rates) approach. [Pg.211]

A large programme utilizing temperature-jump relaxation methods for the study of tautomerism in aqueous solution has led the Dubois group to determine the kinetic and thermodynamic parameters of the equilibrium (130a) (130b) (78T2259). The tautomeric... [Pg.212]

A well-known example of non-prototropic tautomerism is that of azolides (acylotropy). The acyl group migrates between the different heteroatoms and the most stable isomer (annular or functional) is obtained after equilibration. In indazoles both isomers are formed, but 2-acyl derivatives readily isomerize to the 1-substituted isomer. The first order kinetics of this isomerization have been studied by NMR spectroscopy (74TL4421). The same publication described an experiment (Scheme 8) that demonstrated the intermolecular character of the process, which has been called a dissociation-recombination process. [Pg.212]

A parallel exists between the results of protonation and alkylation of pyrazolones since there is an alkyl derivative for each tautomer. The main difference is that the percentage of the different tautomers is thermodynamically controlled whereas that of alkyl derivatives is kinetically controlled. One has to remember that the alkyl derivatives thus obtained are the fixed compounds used in tautomeric studies. [Pg.230]

Imidazole, 4-methyl-annular tautomerism, 5, 363 association, 5, 362 boiling point, 5, 362 bromination, 5, 398 deuteration, 5, 417 diazo coupling, 5, 403 hydrogen bonding, S, 350 hydroxymethylation, 5, 404 iodination, 5, 400 kinetics, 5, 401 mass spectra, 5, 358 melting point, 5, 362 methylation, 5, 364 sulfonation, 5, 397 synthesis, 5, 479-480, 482, 484, 489 Imidazole, 5-methyl-annular tautomerism, 5, 363 Imidazole, l-methyl-4-chloro-ethylation, 5, 386 Imidazole, l-methyl-5-chloro-ethylation, 5, 386 nitration, 5, 395... [Pg.653]

In the genuine low-temperature chemical conversion, which implies the incoherent tunneling regime, the time dependence of the reactant and product concentrations is detected in one way or another. From these kinetic data the rate constant is inferred. An example of such a case is the important in biology tautomerization of free-base porphyrines (H2P) and phtalocyanins (H2PC), involving transfer of two hydrogen atoms between equivalent positions in the square formed by four N atoms inside a planar 16-member heterocycle (fig. 42). [Pg.105]

Kinetic investigation of the reaction of cotarnine and a few aromatic aldehydes (iV-methylcotarnine, m-nitrobenzaldehyde) with hydrogen eyanide in anhydrous tetrahydrofuran showed such differences in the kinetic and thermodynamic parameters for cotarnine compared to those for the aldehydes, and also in the effect of catalysts, so that the possibility that cotarnine was reacting in the hypothetical amino-aldehyde form could be completely eliminated. Even if the amino-aldehyde form is present in concentrations under the limit of spectroscopic detection, then it still certainly plays no pfi,rt in the chemical reactions. This is also expected by Kabachnik s conclusions for the reactions of tautomeric systems where the equilibrium is very predominantly on one side. [Pg.177]

VIII. Tautomerism occupies at least a tridimensional space physical state, thermodynamic vs kinetic approach, and proton vs other migrating entities. [Pg.3]

It is well accepted that tautomerism relates to the equilibrium between two or more different tautomers e.g., it corresponds to determining if the structure of a compound is, for instance, a pyridone or an hydroxypyridine. The kinetic aspects are often neglected and when the tautomeric equilibrium constant, Kt, is equal to 1 (e.g., for imidazole), the problem may seem... [Pg.6]

Recently, zero kinetic energy (ZEKE) photoelectron spectroscopy has been used to study the OH/NH tautomerism of 2-pyridone in the gas phase (95JPC8608). This work, which is expected to develop considerably, provides a wealth of information about that equilibrium for the states So, Sj, and Do (cation ground state). [Pg.51]

Numerous data on kinetics of annular tautomerism have been obtaifled for the degenerate rearrangements of pyrazole derivatives. Since all these rearrangements were found to be intramolecular, we can compare kinetic measurements carried out in different media. The following order of increase in migration ability of various groups is established ... [Pg.205]

Tliere are several reasons for this great interest in the tautomerism of porphyrins (which could justify its own review) (1) their biological significance, (2) their applications in material science ( hole burning is related to their tautomerism), (3) the simplicity of the system (annular tautomerism involving intramolecular proton transfer both in solution and in the solid state), and (4) the possibility of elucidating the kinetic processes in great detail. [Pg.16]

Such modifications can be produced either in the kinetic aspects (proton transfer) or in the equilibrium constant. Both effects are mediated by intramolecular hydrogen bonds. For instance, Navarro et al. (93MI69) showed that the rate of proton transfer between the two nitrogen atoms of pyrazole (annular tautomerism) is considerably reduced in macrocycles containing oxygen or nitrogen atoms in the macroring. [Pg.38]

Katritzky and co-workers studied the mechanism of this reaction in detail. His work involved a NMR study of 16 reactions of methyl-, phenyl-, 1,2-dimethyl-, and l-methyl-2-phenylhydrazine with /3-keto esters. In many cases starting materials, intermediates, and products were detected simultaneously. Most reactions proceed by nucleophilic addition of the less hindered hydrazine nitrogen atom to the keto carbon of the keto ester. For example, the pathway given in Scheme 3 for the reaction of methyl 3-oxobutanoate 9 with methyl- or phenyUiydrazine 2 (R = Me or Ph) was found to be dominant. The initially formed addition product 10 dehydrates to hydrazone 11, which then isomerizes to hydrazone 12. Intermediate 12 then cyclizes to pyrazol-3-one 13, which tautomerizes to the kinetically more stable pyrazol-3-otie 14 [87JCS(P2)969]. [Pg.77]

Keto-enol tautomerism, 264, 842-844 Kiliani, Heinrich, 994 Kiliani-Fischer synthesis, 994-995 Kimbail, George, 216 Kinetic control, 491 Kinetics, 362... [Pg.1303]

The 21//,22//-tautomer 2 with hydrogens at adjacent pyrrole rings is less stable because of penetration of each hydrogen into the van der Waals sphere of the other. However, NMR studies with unsymmetrically substituted porphyrins at low temperature have allowed the observation of both tautomers 1 and 2. The kinetic parameters of tautomerism investigated by NMR measurements at different temperatures are consistent with a two-step process forming 3 from 1 via 2 rather than a concerted two-hydrogen shift which could form 3 from 1 directly. [Pg.578]

The tautomerization is induced by cobalt(II) which forms the thermodynamically more stable metalatcd hydroporphyrins from which the cobalt can be removed using trifluoroacctic acid under kinetic control. Experiments with porphyrinogen and hexahydroporphyrin show that the porphyrinogen-hexahydroporphyrin equilibrium can be shifted by complexation of porphyrinogen with metal ions to the more stable metal hexahydroporphyrins and that metal-free hexahydroporphyrins tautomerize back to the more stable metal-free porphyrinogens.29... [Pg.625]


See other pages where Tautomerization kinetics is mentioned: [Pg.65]    [Pg.189]    [Pg.653]    [Pg.52]    [Pg.300]    [Pg.180]    [Pg.5]    [Pg.7]    [Pg.8]    [Pg.52]    [Pg.60]    [Pg.88]    [Pg.160]    [Pg.160]    [Pg.170]    [Pg.171]    [Pg.191]    [Pg.199]    [Pg.17]    [Pg.18]    [Pg.18]    [Pg.21]    [Pg.22]    [Pg.25]    [Pg.27]    [Pg.36]    [Pg.276]    [Pg.202]   
See also in sourсe #XX -- [ Pg.259 ]




SEARCH



Histidine, calculations kinetics of tautomeric equilibrium

Keto-enol tautomerization reactions kinetics

Kinetic studies of keto-enol and other tautomeric equilibria by flash

Kinetics of tautomerization

Tautomerism kinetic investigations

© 2024 chempedia.info