Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Systems equations branch

Second virial coefficients represent the first approximation to the system equation of state. Yethiraj and Hall [148] obtained the compressibility factor, i.e., pV/kgTn, for small stars. They found no significant differences with respect to the linear chains in the pressure vs volume behavior. Escobedo and de Pablo [149] performed simulations in the NPT ensemble (constant pressure) with an extended continuum configurational bias algorithm to determine volumetric properties of small branched chains with a squared-well attractive potential... [Pg.80]

Equation 6 which is the general solution to a variety of exitation schemes, can be solved graphically for ( ij (L). This is shown here for two cases. The solutions for a medium exhibiting Sg — transition (Fig. 2) incorporated in a matched ring resonator. The results for a coherent field pumping are depicted in Fig. The results for are used to calculate the output intensity as a function of lin (Fig. 4). The bistable behavior of this system (lower branch due to almost linear absorption and upper branch due to saturated absorption) can be also demonstrated in many other cases. The solutions for reverse saturable absorber - a medium exhibiting Sg — S. Ay T- —Tjj ( -jn on transitions - in the same optical resonator... [Pg.337]

Some water distribution systems are branched, whereas others are looped. The latter type offers more reliability in case of a pipe failure. The hydraulic engineering problem is to compute the steady velocity or flow rate in each pipe and the pressure at each junction node by solving a large set of continuity equations and nonlinear energy equations that characterize the network. The steady solution of a branched network is easily obtained mathematically however, the looped network initially... [Pg.1004]

The free radical reaction may be accelerated and propagated via chain branching or homolytical fission of hydroperoxides formed to generate more free radicals (equations (11.4), (11.5)). Free radicals formed can initiate or promote fatty acid oxidation at a faster rate. Thus, once initiated, the free radical reaction is self-sustaining and capable of oxidizing large amounts of lipids. On the other hand, the free radical chain reaction may be terminated by antioxidants (AH) such as vitamin E (tocopherols) that competitively react with a peroxy radical and remove a free radical from the system (equation (11.6)). Also, the chain reaction may be terminated by self-quenching or pol)rmerization of free radicals to form non-radical dimers, trimers and polymers (equation (11.7)). [Pg.330]

A mathematician would classify the SCF equations as nonlinear equations. The term nonlinear has different meanings in different branches of mathematics. The branch of mathematics called chaos theory is the study of equations and systems of equations of this type. [Pg.193]

The computation of mesopore size distribution is valid only if the isotherm is of Type IV. In view of the uncertainties inherent in the application of the Kelvin equation and the complexity of most pore systems, little is to be gained by recourse to an elaborate method of computation, and for most practical purposes the Roberts method (or an analogous procedure) is adequate—particularly in comparative studies. The decision as to which branch of the hysteresis loop to use in the calculation remains largely arbitrary. If the desorption branch is adopted (as appears to be favoured by most workers), it needs to be recognized that neither a Type B nor a Type E hysteresis loop is likely to yield a reliable estimate of pore size distribution, even for comparative purposes. [Pg.286]

New radicals are introduced by thermolysis of the hydroperoxide by chain-branching decomposition (eq. 4). Radicals are removed from the system by chain-termination reaction(s) (eq. 5). Under steady-state conditions, the production of new radicals is in balance with the rate of radical removal by termination reactions and equation 8 appHes for the scheme of equations 1—5 where r. = rate of new radical introduction (eq. 4). [Pg.334]

This method has a simple straightforward logic for even complex systems. Multinested loops are handled like ordinary branched systems, and it can be extended easily to handle dynamic analysis. However, a huge number of equations is involved. The number of unknowns to be solved is roughly equal to six times the number of node points. Therefore, in a simple three-anchor system, the number of equations to be solved in the flexibiUty method is only 12, whereas the number of equations involved in the direct stiffness method can be substantially larger, depending on the actual number of nodes. [Pg.63]

Upon formulating these relationships, phenols with branched alkyl substituents were not included in the data of a-cyclodextrin systems, though they were included in (3-cyclodextrin systems. In all the above equations, the n term was statistically significant at the 99.5 % level of confidence, indicating that the hydrophobic interaction plays a decisive role in the complexation of cyclodextrin with phenols. The Ibrnch term was statistically significant at the 99.5% level of confidence for (3-cyclo-dextrin complexes with m- and p-substituted phenols. The stability of the complexes increases with an increasing number of branches in substituents. This was ascribed to the attractive van der Waals interaction due to the close fitness of the branched substituents to the (3-cyclodextrin cavity. The steric effect of substituents was also observed for a-cyclodextrin complexes with p-substituted phenols (Eq. 22). In this case, the B parameter was used in place of Ibmch, since no phenol with a branched... [Pg.75]

Equation (31) applies to monodisperse systems. For polydisperse systems Rg reflects a high-order moment of the distribution, the ratio of the 8th to the 6th moment of the distribution in mean size. For this reason Rg will correlate with the largest sizes of a distribution. There are several advantages to Rg as a measure of size over the end-to-end distance. For branched, star and ring structures the end-to-end distance has no clear meaning while Rg retains its meaning. Further, Rg is directly measured in static scattering measurements so it maintains a direct link to experiment. [Pg.133]

The surface area was calculated using the BET equation,36 while the total pore volume and the average pore size were calculated from the nitrogen desorption branch applying the Barrett-Joyner-Halenda (BJH) method.37 BET and BJH adsorption measurements were carried out with a Micromeritics Tri-Star system on both the supports and the calcined catalysts. Prior to measurements, the samples were evacuated at 433 K to approximately 50 mTorr for 4 h. [Pg.248]

The mathematical treatment can be further simplified in one particular case, that corresponding to Figure 4.10(a). As we saw in the previous section, in some binary systems the two terminal solid solution phases have very different physical properties and the solid solubility may be neglected for simplicity. If we assume no solid solubility (i.e. as =a =1) and in addition neglect the effect of the heat capacity difference between the solid and liquid components, eqs. (4.29) and (4.30) can be transformed to two equations describing the two liquidus branches ... [Pg.100]

As compared with the other closures discussed in this chapter, computation studies based on the presumed conditional PDF are relatively rare in the literature. This is most likely because of the difficulties of deriving and solving conditional moment equations such as (5.399). Nevertheless, for chemical systems that can exhibit multiple reaction branches for the same value of the mixture fraction,162 these methods may offer an attractive alternative to more complex models (such as transported PDF methods). Further research to extend multi-environment conditional PDF models to inhomogeneous flows should thus be pursued. [Pg.255]


See other pages where Systems equations branch is mentioned: [Pg.419]    [Pg.42]    [Pg.464]    [Pg.36]    [Pg.124]    [Pg.665]    [Pg.668]    [Pg.666]    [Pg.791]    [Pg.1099]    [Pg.2268]    [Pg.55]    [Pg.136]    [Pg.199]    [Pg.399]    [Pg.122]    [Pg.48]    [Pg.98]    [Pg.56]    [Pg.210]    [Pg.257]    [Pg.404]    [Pg.143]    [Pg.13]    [Pg.314]    [Pg.227]    [Pg.6]    [Pg.485]    [Pg.338]    [Pg.57]    [Pg.193]    [Pg.211]    [Pg.659]    [Pg.396]    [Pg.784]    [Pg.210]    [Pg.69]   
See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Branch system

Branching equation

Equations systems

© 2024 chempedia.info