Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthesis of Oxaloacetate from Pyruvate

The ability to synthesize new oxaloacetate from pyruvate is essential to maintain activity of the TCA cycle for cell growth and for gluconeogenesis. [Pg.95]

Pyruvate carboxylase catalyzes the synthesis of oxaloacetate from pyruvate and CO2. [Pg.95]

Oxaloacetate synthesis is also needed when mitochondria are formed during cell growth and division. [Pg.95]

Oxaloacetate can also be converted to malate and transported to the cytoplasm for gluconeogenesis under fasting conditions (see Chapter 6). [Pg.95]


It is likely that nature has found more ways to catalyze the caiboxylation of pyruvate and its reverse, the decarboxylation of oxaloacetate, than any other reaction. In spite of the fact that the overall equilibrium strongly favors decarboxylation, a variety of enzymes catalyze the synthesis of oxaloacetate from pyruvate. We will examine a number of these enzymes in the following sections. [Pg.243]

Am. Gluconeogenesis is the process in which glucose is synthesized from pyruvate. It begins with the synthesis of oxaloacetate from pyruvate by carboxylation. [Pg.475]

Biotin is a colactor for the synthesis of oxaloacetate from pyruvate by pyruvate carboxylase. Therefore, metabolic conversions, which require pyruvate carboxylase, will be inhibited. These will include only reaction (e) pyruvate —> oxaloacetate, and conversion... [Pg.284]

There are two unusual aspects to the regulation of gluconeogenesis. The first step in the reaction, the formation of oxaloacetate from pyruvate, requires the presence of acetyl-CoA. This is a check to make sure that the TCA cycle is adequately fueled. If there s not enough acetyl-CoA around, the pyruvate is needed for energy and gluconeogenesis won t happen. However, if there s sufficient acetyl-CoA, the pyruvate is shifted toward the synthesis of glucose. [Pg.159]

The first "roadblock" to overcome in the synthesis of glucose from pyruvate is the irreversible conversion in glycolysis of pyruvate to phosphoenolpyruvate (PEP) by pyruvate kinase. In gluconeogenesis, pyruvate is first carboxylated by pyruvate carboxylase to oxaloacetate (OAA), which is then converted to PEP by the action of PEP-carboxykinase (Figure 10.3). [Pg.116]

Claisen reactions involving acetyl-CoA are made even more favourable by first converting acetyl-CoA into malonyl-CoA by a carboxylation reaction with CO2 using ATP and the coenzyme biotin (Figure 2.9). ATP and CO2 (as bicarbonate, HC03-) form the mixed anhydride, which car-boxy lates the coenzyme in a biotin-enzyme complex. Fixation of carbon dioxide by biotin-enzyme complexes is not unique to acetyl-CoA, and another important example occurs in the generation of oxaloacetate from pyruvate in the synthesis of glucose from non-carbohydrate sources... [Pg.17]

Since Corynebacterium glutamicum does not possess a PEPsynthetase, no [3- CjPEP isotopomers can be formed from pyruvate. Thus, any [3- C]oxaloac-etate isotopomers must result from the action of PyrCx in vivo and their relative abundance allows to quantitate the relative contributions of PEPCx and PyrCx to oxaloacetate synthesis. In the aspartate derived from oxaloacetate a content of isotopomers labelled in C-3 but not in C-2 similarly high as that in pyruvate was found (Fig. 8 c), suggesting synthesis of oxaloacetate from pym-... [Pg.18]

Pyruvate carboxylase catalyzes the formation of oxaloacetate from pyruvate and leads to a net synthesis of a TCA cycle constituent The enzyme has been shown by immunohistochemical techniques to be highly concentrated in the astrocytes (Shank et al., 1981) It has also been found in high concentrations in a primary culture of astrocytes (Yu et al., 1983). [Pg.207]

The Jirst indirect route in glucose synthesis involves the formation of phosphoenolpyruvate from pyruvate without the intervention of pyruvate kinase. This route is catalyzed by two enzymes. At first, pyruvate is converted into oxaloacetate. This reaction occurs in the mitochondria as the pyruvate molecules enter them, and is catalyzed by pyruvate carboxylase according to the scheme... [Pg.186]

Answer Anaplerotic reactions replenish intermediates in the citric acid cycle. Net synthesis of a-ketoglutarate from pyruvate occurs by the sequential actions of (1) pyruvate carboxylase (which makes extra molecules of oxaloacetate), (2) pyruvate dehydrogenase, and the citric acid cycle enzymes (3) citrate synthase, (4) aconitase, and (5) isocitrate dehydrogenase ... [Pg.179]

The formation of acetyl-CoA from pyruvate in animals is via the pyruvate dehydrogenase complex, which catalyzes the irreversible decarboxylation reaction. Carbohydrate is synthesized from oxaloacetate, which in turn is synthesized from pyruvate via pyruvate carboxylase. Since the pyruvate dehydrogenase reaction is irreversible, acetyl-CoA cannot be converted to pyruvate, and hence animals cannot realize a net gain of carbohydrate from acetyl-CoA. Because plants have a glyoxylate cycle and animals do not, plants synthesize one molecule of succinate and one molecule of malate from two molecules of acetyl-CoA and one of oxaloacetate. The malate is converted to oxaloacetate, which reacts with another molecule of acetyl-CoA and thereby continues the reactions of the glyoxylate cycle. The succinate is also converted to oxaloacetate via the enzymes of the citric acid cycle. Thus, one molecule of oxaloacetate is diverted to carbohydrate synthesis and, therefore, plants are able to achieve net synthesis of carbohydrate from acetyl-CoA. [Pg.361]

Pyruvate Carboxylase Pyruvate carboxylase catalyzes the car-boxylation of pyruvate to oxaloacetate - both the first committed step of gluconeogenesis from pyruvate and also an important anaplerotic reaction, permitting repletion of tricarboxylic acid cycle intermediates and hence fatty acid synthesis. The mammalian enzyme is activated aUosterically by acetyl CoA, which accumulates when there is a need for increased activity of pyruvate carboxylase to synthesize oxaloacetate to permit increased citric acid cycle activity or for gluconeogenesis (Attwood, 1995 Jitrapakdee and Wallace, 1999). [Pg.331]

It is important to note that animals are unable to effect the net synthesis of glucose from fatty acids. Specifically, acetyl CoA cannot be converted into pyruvate or oxaloacetate in animals. The two carbon atoms of the acetyl group of acetyl CoA enter the citric acid cycle, but two carbon atoms leave the cycle in the decarboxylations catalyzed by isocitrate dehydrogenase and a-ketoglutarate dehydrogenase. Consequently, oxaloacetate is regenerated, but it is not formed de novo when the acetyl unit of acetyl CoA is oxidized by the citric acid cycle. In contrast, plants have two additional enzymes enabling them to convert the carbon atoms of acetyl CoA into oxaloacetate (Section 17.4.). [Pg.914]

A third fate of pyruvate is its carboxylation to oxaloacetate inside mitochondria, the first step in gluconeogenesis. This reaction and the subsequent conversion of oxaloacetate into phosphoenolpyruvate bypass an irreversible step of glycolysis and hence enable glucose to be synthesized from pyruvate. The carboxylation of pyruvate is also important for replenishing intermediates of the citric acid cycle. Acetyl CoA activates pyruvate carboxylase, enhancing the synthesis of oxaloacetate, when the citric acid cycle is slowed by a paucity of this intermediate. [Pg.1254]

Finally, oxaloacetate is simultaneously decarboxylated and phosphorylated by phosphoenolpyruvate carboxykinase in the cytosol. The CO2 that was added to pyruvate by pyruvate carboxylase comes off in this step. Recall that, in glycolysis, the presence of a phosphoryl group traps the unstable enol isomer of pyruvate as phosphoenolpyruvate (Section 16.1.7). In gluconeogenesis, the formation of the unstable enol is driven by decarboxylation—the oxidation of the carboxylic acid to CO2—and trapped by the addition of a phosphate to carbon 2 from GTP. The two-step pathway for the formation of phosphoenolpyruvate from pyruvate has a AG° of + 0.2 kcal mol ( + 0.13 kj moP ) in contrast with +7.5 kcal mol ( + 31 kj mol ) for the reaction catalyzed by pyruvate kinase. The much more favorable AG° for the two-step pathway results from the use of a molecule of ATP to add a molecule of CO2 in the carboxylation step that can be removed to power the formation of phosphoenolpyruvate in the decarboxylation step. Decarboxylations often drive reactions otherwise highly endergonic. This metabolic motif is used in the citric acid cycle (Section IS.x.x), the pentose phosphate pathway (Section 17.x.x), and fatty acid synthesis (Section 22.x.x). [Pg.454]

Kraeva NI and Vorobjeva LI (1981b) Superoxide dismutase, catalase, and peroxidase of propionic acid bacteria. Mikrobiologiya 50 813-817 Krebs flA and Eggleston LV (1941) Biological synthesis of oxaloacetic acid from pyruvic acid and carbon dioxide. II. The mechanism of carbon dioxide fixation in propionic acid bacteria. Biochem J 35 676-687... [Pg.263]

Pyruvate is converted to phosphoenolpyruvate for glucose synthesis by a two-step reaction, with the intermediate formation of oxaloacetate. As shown in Figure 5.31, pyruvate is carboxylated to oxaloacetate in an ATP-dependent reaction in which the vitamin biotin (section 11.12) is the coenzyme. This reaction can also be used to replenish oxaloacetate in the citric acid cycle when intermediates have been withdrawn for use in other pathways, and is involved in the return of oxaloacetate from the cytosol to the mitochondrion in fatty acid synthesis — see Figure 5.26. Oxaloacetate then undergoes a phosphorylation reaction, in which it also loses carbon dioxide, to form phosphoenolpyruvate. The phosphate donor for this reaction is GTP as discussed in section 5.4.4, this provides regulation over the use of oxaloacetate for gluconeogenesis if citric acid cycle activity would be impaired. [Pg.168]

In 1937 Krebs found that citrate could be formed in muscle suspensions if oxaloacetate and either pyruvate or acetate were added. He saw that he now had a cycle, not a simple pathway, and that addition of any of the intermediates could generate all of the others. The existence of a cycle, together with the entry of pyruvate into the cycle in the synthesis of citrate, provided a clear explanation for the accelerating properties of succinate, fumarate, and malate. If all these intermediates led to oxaloacetate, which combined with pyruvate from glycolysis, they could stimulate the oxidation of many substances besides themselves. (Kreb s conceptual leap to a cycle was not his first. Together with medical student Kurt Henseleit, he had already elucidated the details of the urea cycle in 1932.) The complete tricarboxylic acid (Krebs) cycle, as it is now understood, is shown in Figure 20.4. [Pg.642]

FIGURE 20.23 Export of citrate from mitochondria and cytosolic breakdown produces oxaloacetate and acetyl-CoA. Oxaloacetate is recycled to malate or pyruvate, which re-enters the mitochondria. This cycle provides acetyl-CoA for fatty acid synthesis in the cytosol. [Pg.663]


See other pages where Synthesis of Oxaloacetate from Pyruvate is mentioned: [Pg.157]    [Pg.95]    [Pg.375]    [Pg.157]    [Pg.95]    [Pg.375]    [Pg.93]    [Pg.246]    [Pg.149]    [Pg.214]    [Pg.523]    [Pg.689]    [Pg.966]    [Pg.125]    [Pg.106]    [Pg.370]    [Pg.666]    [Pg.400]    [Pg.461]    [Pg.754]    [Pg.268]    [Pg.331]    [Pg.333]    [Pg.688]    [Pg.308]    [Pg.237]    [Pg.168]    [Pg.1104]    [Pg.106]   


SEARCH



From pyruvate

Oxaloacetate

Oxaloacetate synthesis

Oxaloacetate synthesis from

Oxaloacetate synthesis from pyruvate

Pyruvates synthesis

© 2024 chempedia.info