Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyruvate carboxylase requirements

Pyruvate carboxylase requires biotin, a cofactor that is commonly involved in C02 fixation reactions. [Pg.115]

Pyruvate carboxylase is the most important of the anaplerotie reactions. It exists in the mitochondria of animal cells but not in plants, and it provides a direct link between glycolysis and the TCA cycle. The enzyme is tetrameric and contains covalently bound biotin and an Mg site on each subunit. (It is examined in greater detail in our discussion of gluconeogenesis in Chapter 23.) Pyruvate carboxylase has an absolute allosteric requirement for acetyl-CoA. Thus, when acetyl-CoA levels exceed the oxaloacetate supply, allosteric activation of pyruvate carboxylase by acetyl-CoA raises oxaloacetate levels, so that the excess acetyl-CoA can enter the TCA cycle. [Pg.663]

Two particularly interesting aspects of the pyruvate carboxylase reaction are (a) allosteric activation of the enzyme by acyl-coenzyme A derivatives and (b) compartmentation of the reaction in the mitochondrial matrix. The carboxy-lation of biotin requires the presence (at an allosteric site) of acetyl-coenzyme A or other acylated coenzyme A derivatives. The second half of the carboxylase reaction—the attack by pyruvate to form oxaloacetate—is not affected by CoA derivatives. [Pg.745]

Step 1 of Figure 29.13 Carboxylation Gluconeogenesis begins with the carboxyl-afion of pyruvate to yield oxaloacetate. The reaction is catalyzed by pyruvate carboxylase and requires ATP, bicarbonate ion, and the coenzyme biotin, which acts as a carrier to transport CO2 to the enzyme active site. The mechanism is analogous to that of step 3 in fatty-acid biosynthesis (Figure 29.6), in which acetyl CoA is carboxylated to yield malonyl CoA. [Pg.1162]

Biotin is involved in carboxylation and decarboxylation reactions. It is covalently bound to its enzyme. In the carboxylase reaction, C02 is first attached to biotin at the ureido nitrogen, opposite the side chain in an ATP-dependent reaction. The activated C02 is then transferred from carboxybiotin to the substrate. The four enzymes of the intermediary metabolism requiring biotin as a prosthetic group are pyruvate carboxylase (pyruvate oxaloacetate), propionyl-CoA-carboxylase (propionyl-CoA methylmalonyl-CoA), 3-methylcroto-nyl-CoA-carboxylase (metabolism of leucine), and actyl-CoA-carboxylase (acetyl-CoA malonyl-CoA) [1]. [Pg.270]

Pyruvate carboxylase is a mitochondrial enzyme and like other carboxylase or decarboxylase enzymes requires biotin as coenzyme. The biotin is firmly attached to the enzyme protein (i.e. a prosthetic group) via a lysine residue. The role of biotin is to hold the C02 in the correct orientation to allow its incorporation into the pyruvate. [Pg.216]

Carbonic anhydrase (CA, also called carbonate dehydratase) is an enzyme found in most human tissues. As well as its renal role in regulating pH homeostasis (described below) CA is required in other tissues to generate bicarbonate needed as a co-substrate for carboxylase enzymes, for example pyruvate carboxylase and acetyl-CoA carboxylase, and some synthase enzymes such as carbamoyl phosphate synthases I and II. At least 12 isoenzymes of CA (CA I—XII) have been identified with molecular masses varying between 29 000 and 58 000 some isoenzymes are found free in the cytosol, others are membrane-bound and two are mitochondrial. [Pg.266]

Pyruvate carboxylase is a mitochondrial enzyme requiring biotin. It is activated by acetyl CoA (fiom p oxidation). The product oxaloacetate (OAA), a citric add cyde intermediate, cannot leave the mitochondria but is reduced to malate that can leave via the malate shuttle. In the cytoplasm, malate is reoxidized to OAA. [Pg.198]

Pyruvate is first transported from the cytosol into mitochondria or is generated from alanine within mitochondria by transamination, in which the a-amino group is removed from alanine (leaving pyruvate) and added to an a-keto carboxylic acid (transamination reactions are discussed in detail in Chapter 18). Then pyruvate carboxylase, a mitochondrial enzyme that requires the coenzyme biotin, converts the pyruvate to oxaloacetate (Fig. 14-17) ... [Pg.544]

The reaction involves biotin as a carrier of activated HCO3 (Fig. 14-18). The reaction mechanism is shown in Figure 16-16. Pyruvate carboxylase is the first regulatory enzyme in the gluconeogenic pathway, requiring acetyl-CoA as a positive effector. (Acetyl-CoA is produced by fatty acid oxidation (Chapter 17), and its accumulation signals the availability of fatty acids as fuel.) As we shall see in Chapter 16 (see Fig. 16-15), the pyruvate carboxylase reaction can replenish intermediates in another central metabolic pathway, the citric acid cycle. [Pg.545]

Table 16-2 shows the most common anaplerotic reactions, all of which, in various tissues and organisms, convert either pyruvate or phosphoenolpyruvate to ox-aloacetate or malate. The most important anaplerotic reaction in mammalian liver and kidney is the reversible carboxylation of pyruvate by C02 to form oxaloacetate, catalyzed by pyruvate carboxylase. When the citric acid cycle is deficient in oxaloacetate or any other intermediates, pyruvate is carboxylated to produce more oxaloacetate. The enzymatic addition of a carboxyl group to pyruvate requires energy, which is supplied by ATP—the free energy required to attach a carboxyl group to pyruvate is about equal to the free energy available from ATP. [Pg.617]

The pyruvate carboxylase reaction requires the vitamin biotin (Fig. 16-16), which is the prosthetic group of the enzyme. Biotin plays a key role in many carboxyla-tion reactions. It is a specialized carrier of one-carbon groups in their most oxidized form C02. (The transfer of one-carbon groups in more reduced forms is mediated by other cofactors, notably tetrahydrofolate and 5-adenosylmethionine, as described in Chapter 18.)... [Pg.618]

Propionyl-CoA is first carboxylated to form the d stereoisomer of methylmalonyl-CoA (Pig. 17—11) by propionyl-CoA carboxylase, which contains the cofactor biotin. In this enzymatic reaction, as in the pyruvate carboxylase reaction (see Pig. 16-16), C02 (or its hydrated ion, HCO ) is activated by attachment to biotin before its transfer to the substrate, in this case the propionate moiety. Formation of the carboxybiotin intermediate requires energy, which is provided by the cleavage of ATP to ADP and Pi- The D-methylmalonyl-CoA thus formed is enzymatically epimerized to its l stereoisomer by methylmalonyl-CoA epimerase (Pig. 17-11). The L-methylmal onyl -CoA then undergoes an intramolecular rearrangement to form succinyl-CoA, which can enter the citric acid cycle. This rearrangement is catalyzed by methylmalonyl-CoA mutase, which requires as its coenzyme 5 -deoxyadenosyl-cobalamin, or coenzyme Bi2, which is derived from vitamin B12 (cobalamin). Box 17—2 describes the role of coenzyme B12 in this remarkable exchange reaction. [Pg.642]

Pyruvate is converted to phosphoenolpyruvate (PEP) by pyruvate carboxylase and PEP carboxykinase. The carboxylase requires biotin and ATP, and is allosterically activated by acetyl CoA. PEP carboxykinase, which requires GTP, is the rate-limiting step in gluconeo genesis. The transcription of its mRNA is increased by glucagon and decreased by insulin. [Pg.478]

A bound divalent metal ion, usually Mn2+, is required in the transcarboxylation step. A possible function is to assist in enolization of the carboxyl acceptor. However, measurement of the effect of the bound Mn2+ on 13C relaxation times in the substrate for pyruvate carboxylase indicated a distance of 0.7 ran between the carbonyl carbon and the Mn2+, too great for direct coordination of the metal to the carbonyl oxygen.68 Another possibility is that the metal binds to the carbonyl of biotin as indicated in Eq. 14-11. Pyruvate carboxylase utilizes two divalent metal ions and at least one monovalent cation.683... [Pg.729]

Eight enzyme-catalyzed reactions are involved in the conversion of acetyl-CoA into fatty acids. The first reaction is catalyzed by acetyl-CoA carboxylase and requires ATP. This is the reaction that supplies the energy that drives the biosynthesis of fatty acids. The properties of acetyl-CoA carboxylase are similar to those of pyruvate carboxylase, which is important in the gluconeogenesis pathway (see chapter 12). Both enzymes contain the coenzyme biotin covalently linked to a lysine residue of the protein via its e-amino group. In the last section of this chapter we show that the activity of acetyl-CoA carboxylase plays an important role in the control of fatty acid biosynthesis in animals. Regulation of the first enzyme in a biosynthetic pathway is a strategy widely used in metabolism. [Pg.420]

Thus, reversal of the glycolytic step from PEP to pyruvate requires two reactions in gluconeogenesis, pyruvate to oxaloacetate by pyruvate carboxylase and oxaloacetate to PEP by PEP carboxykinase. Given that the conversion of PEP to pyruvate in glycolysis synthesizes ATP, it is not surprising that the overall reversal of this step needs the input of a substantial amount of energy, one ATP for the pyruvate carboxylase step and one GTP for the PEP carboxy kinase step. [Pg.293]

Fatty acid biosynthesis (and most biosynthetic reactions) requires NADPH to supply the reducing equivalents. Oxaloacetate is used to generate NADPH for biosynthesis in a two-step sequence. The first step is the malate dehydrogenase reaction found in the TCA cycle. This reaction results in the formation of NAD from NADH (the NADH primarily comes from glycolysis). The malate formed is a substrate for the malic enzyme reaction, which makes pyruvate, CO2, and NADPH. Pyruvate is transported into the mitochondria where pyruvate carboxylase uses ATP energy to regenerate oxaloacetate. [Pg.26]

In addition, hepatic fatty acid oxidation is also required to sustain gluconeogenesis. These fatty acids may be obtained from exogenous feeding or metabolism of fatty acids released from endogenous lipid stores. (3-Oxidation of fatty acids provides the acetyl-CoA needed to activate mitochondrial pyruvate carboxylase and the NADH used as the substrate in the reaction catalyzed by glyceraldehyde 3-phosphate dehydrogenase in the direction of gluconeogenesis (see Fig. 10-1). [Pg.112]

Figure 2.5 Gluconeogenesis is the reversal of glycolysis, attained through the use of four unique enzymes glucose-6-phosphatase (A), fructose-1,6-bisphosphatase (5), PEP carboxykinase (6) and pyruvate carboxylase (7). Although phosphoglycerate kinase is shared with glycolysis, in gluconeogenesis this reaction requires the input of ATP. Figure 2.5 Gluconeogenesis is the reversal of glycolysis, attained through the use of four unique enzymes glucose-6-phosphatase (A), fructose-1,6-bisphosphatase (5), PEP carboxykinase (6) and pyruvate carboxylase (7). Although phosphoglycerate kinase is shared with glycolysis, in gluconeogenesis this reaction requires the input of ATP.
The method described is suitable for the assay of four biotin-containing carboxylases pyruvate carboxylase, acetyl-coenzyme A carboxylase, propionyl-coenzyme A carboxylase, and 3-methylcrotonyl-coenzyme A carboxylase. The assays do not require radioisotopes and are suitable for use in clinical laboratories. [Pg.399]


See other pages where Pyruvate carboxylase requirements is mentioned: [Pg.84]    [Pg.129]    [Pg.162]    [Pg.184]    [Pg.927]    [Pg.375]    [Pg.52]    [Pg.84]    [Pg.129]    [Pg.162]    [Pg.184]    [Pg.927]    [Pg.375]    [Pg.52]    [Pg.747]    [Pg.157]    [Pg.199]    [Pg.537]    [Pg.544]    [Pg.58]    [Pg.545]    [Pg.117]    [Pg.119]    [Pg.121]    [Pg.122]    [Pg.724]    [Pg.888]    [Pg.1002]    [Pg.299]    [Pg.323]    [Pg.258]    [Pg.55]    [Pg.30]    [Pg.157]    [Pg.76]    [Pg.38]   
See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Carboxylase

Carboxylases

Pyruvate carboxylase

© 2024 chempedia.info