Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael addition Synthesis

Hell-Volhard-Zelinsky reaction malonic ester synthesis Michael addition... [Pg.1095]

Alumina supported KF has been introduced by Ando etal.[42] and Clark etal.[43] as a basic catalyst for many types of the reactions such as o-methylation of phenol, crown ether synthesis, Michael addition of various nitroalkanes to unsaturated carbonyl compounds etc. [Pg.47]

N-Condensed 3-pyrrolidone ring synthesis Michael addition combined with Dieckmann cyclization Subsequent -decarbalkoxylation... [Pg.200]

Sequential diene synthesis-Michael addition-1,3-dipolar cycloaddition... [Pg.414]

Synthesis All by standard steps. Though the Michael addition on A could in the ciy occur at either double bond, the unsubstituted position out of the ring is much more reactive than the disubstituted position in the ring and only the wanted reaction occurs. Bull. Soc. Chim. France. 1955, 8. [Pg.42]

The synthesis of spiro compounds from ketones and methoxyethynyl propenyl ketone exemplifies some regioselectivities of the Michael addition. The electrophilic triple bond is attacked first, next comes the 1-propenyl group. The conjugated keto group is usually least reactive. The ethynyl starting material has been obtained from the addition of the methoxyethynyl anion to the carbonyl group of crotonaldehyde (G. Stork, 1962 B, 1964A). [Pg.74]

Acetoxy-l,7-octadiene (40) is converted into l,7-octadien-3-one (124) by hydrolysis and oxidation. The most useful application of this enone 124 is bisannulation to form two fused six-membered ketonesfl 13], The Michael addition of 2-methyl-1,3-cyclopentanedione (125) to 124 and asymmetric aldol condensation using (5)-phenylalanine afford the optically active diketone 126. The terminal alkene is oxidi2ed with PdCl2-CuCl2-02 to give the methyl ketone 127 in 77% yield. Finally, reduction of the double bond and aldol condensation produce the important intermediate 128 of steroid synthesis in optically pure form[114]. [Pg.442]

The method was applied to the synthesis of (-t-)-l9-nortestosterone by the following sequence of reactions. Michael addition of the bisannulation reagent 124 to the optically active keto ester 129 and decarboxylation afforded 130, and subsequent aldol condensation gave 131. Selective Pd-catalyzed oxidation of the terminal double bond afforded the diketone 132 in 78% yield. Reduction of the double bond and aldol condensation gave ( + )-19-nortestosterone (133)[114]. [Pg.442]

The synthesis of cyclohexenone derivatives by Michael addition followed by intramolec ular aldol condensation is called the Robinson annulation, after Sir Robert Robinson who popularized its use By annulatwn we mean the building of a ring onto some start mg molecule (The alternative spelling annelation is also often used)... [Pg.779]

Addition of HCN to unsaturated compounds is often the easiest and most economical method of making organonitnles. An early synthesis of acrylonitrile involved the addition of HCN to acetylene. The addition of HCN to aldehydes and ketones is readily accompHshed with simple base catalysis, as is the addition of HCN to activated olefins (Michael addition). However, the addition of HCN to unactivated olefins and the regioselective addition to dienes is best accompHshed with a transition-metal catalyst, as illustrated by DuPont s adiponitrile process (6—9). [Pg.217]

In the absence of a base, the ayiridine ring can be quaterni2ed and opened by the nucleophile. A pyrroli2idine synthesis, in which such a reaction proceeds intramoleculady followed by a Michael addition (159), is shown as follows ... [Pg.6]

Another impo2rtant P—C-hond-forming reaction is the base-cataly2ed Michael addition to activated double bonds. For example, dimethyl phosphite can be added to dimethyl maleate to yield tetramethylphosphonosucciaate [2788-26-3] (TMPS), an iatermediate ia the synthesis of 2-phosphonobutane-l,2,4-tricarboxyhc acid [37971-36-1] (PBTC) with 98% yield (20). [Pg.361]

Vinylpyridine (23) came into prominence around 1950 as a component of latex. Butadiene and styrene monomers were used with (23) to make a terpolymer that bonded fabric cords to the mbber matrix of automobile tires (25). More recendy, the abiUty of (23) to act as a Michael acceptor has been exploited in a synthesis of 4-dimethylaminopyridine (DMAP) (24) (26). The sequence consists of a Michael addition of (23) to 4-cyanopyridine (15), replacement of the 4-cyano substituent by dimethylamine (taking advantage of the activation of the cyano group by quatemization of the pyridine ring), and base-cataly2ed dequatemization (retro Michael addition). 4-r)imethyl aminopyri dine is one of the most effective acylation catalysts known (27). [Pg.326]

An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

An analogous preparation of thioxopenams from dithiocarbonates (75, R = t-C4H2(CH2)2Si, R = OC H ) has also been described (115). Additionally, an iatramolecular Michael addition reaction to form the [2,3] bond has been exploited ia penem synthesis to prepare FCE 22101 (69) (116). [Pg.12]

The Michael addition of nucleophiles to the carbon—carbon double bond of maleimide has been exploited ia the synthesis of a variety of linear polymers through reaction of bismaleimide with bisthiols (39). This method has been used to synthesize ethynyl-terminated imidothioether from the reaction of 4,4 -dimercaptodiphenyl ether [17527-79-6] and A/-(3-ethynylphenyl)maleimide (40). The chemical stmcture of this Michael addition imide thermoset is as follows ... [Pg.27]

The Michael addition reaction of amines and thiols with bismaleimides or functionalized monomaleimides is a versatile tool ia the synthesis of chain-extended maleimide-terroinated prepolymers. These prepolymers generally are soluble ia organic solvents from which they can be processed to prepreg and molded to high quaUty, void-free laminates. [Pg.27]

Remarkably few examples of this type of ring construction are available. The cobalt carbonyl hydride catalyzed hydroformylation of A/,A/ -diallylcarbamates has provided 3-pyrrolidinones (Scheme 61a) (81JOC4433). The pyrrole synthesis shown in Scheme 61b depends on Michael addition of ethyl a-lithioisocyanoacetate to ethyl a-isocyanocrotonate (77LA1174). [Pg.123]

Woodward s total synthesis of cephalosporin C begins with L-cysteine (48) which establishes the chiral center at C-7. The cis geometry at C-6,7 is achieved in intermediate (49) which is cyclized to (50) by treatment with triethylaluminum. The dihydrothiazine ring is constructed by Michael addition to the condensation product of trichloroethyl glyoxylate... [Pg.294]

Imidazole, 2-ethyl-1 -(o-nitrophenyl)-cyclization, S, 431 Imidazole, 4-ethyl-2-phenyl-oxidation, S, 405 Imidazole, ethynyl-Michael addition, S, 437 Imidazole, 4-ethynyl-2-phenyl-synthesis, S, 494 Imidazole, 1-formyl-reactions, S, 452 Imidazole, 2-formyl-mass spectra, S, 360 Imidazole, 4-formyl-synthesis, S, 475-476 Imidazole, 2-formyl-1,5-dimethyl-mass spectra, S, 360 3-oxide... [Pg.651]

Michael addition reactions, 3, 279, 288 structure, 3, 273 Pteridine-4-thiones synthesis, 3, 318... [Pg.754]

Purines, N-alkyl-N-phenyl-synthesis, 5, 576 Purines, alkylthio-hydrolysis, 5, 560 Mannich reaction, 5, 536 Michael addition reactions, 5, 536 Purines, S-alkylthio-hydrolysis, 5, 560 Purines, amino-alkylation, 5, 530, 551 IR spectra, 5, 518 reactions, 5, 551-553 with diazonium ions, 5, 538 reduction, 5, 541 UV spectra, 5, 517 Purines, N-amino-synthesis, 5, 595 Purines, aminohydroxy-hydrogenation, 5, 555 reactions, 5, 555 Purines, aminooxo-reactions, 5, 557 thiation, 5, 557 Purines, bromo-synthesis, 5, 557 Purines, chloro-synthesis, 5, 573 Purines, cyano-reactions, 5, 550 Purines, dialkoxy-rearrangement, 5, 558 Purines, diazoreactions, 5, 96 Purines, dioxo-alkylation, 5, 532 Purines, N-glycosyl-, 5, 536 Purines, halo-N-alkylation, 5, 529 hydrogenolysis, 5, 562 reactions, 5, 561-562, 564 with alkoxides, 5, 563 synthesis, 5, 556 Purines, hydrazino-reactions, 5, 553 Purines, hydroxyamino-reactions, 5, 556 Purines, 8-lithiotrimethylsilyl-nucleosides alkylation, 5, 537 Purines, N-methyl-magnetic circular dichroism, 5, 523 Purines, methylthio-bromination, 5, 559 Purines, nitro-reactions, 5, 550, 551 Purines, oxo-alkylation, 5, 532 amination, 5, 557 dipole moments, 5, 522 H NMR, 5, 512 pJfa, 5, 524 reactions, 5, 556-557 with diazonium ions, 5, 538 reduction, 5, 541 thiation, 5, 557 Purines, oxohydro-IR spectra, 5, 518 Purines, selenoxo-synthesis, 5, 597 Purines, thio-acylation, 5, 559 alkylation, 5, 559 Purines, thioxo-acetylation, 5, 559... [Pg.761]

Enamine addition to an unsaturated ester, followed by an intramolecular alkylation, provided a facile synthesis of an adamantane bis-/3-ketoester 674). Michael addition of pyrrolidinocycloheptene to other acrylic esters 668) and of other enamines to acrylic acids 675), a chloroacrylonitrile 676), and an unsaturated cyanocarboxamide (577) were reported. [Pg.372]

There is no published mechanistic study on the Auwers flavone synthesis. The mechanism may involve the nucleophilic addition of oxonium 7, derived from 1, with hydroxide to give 8. Base-promoted ring opening of 8 could provide the putative intermediate 9, which then could undergo an intramolecular Michael addition to form 10. Expulsion of bromide ion from 10 would then give flavonol 2. [Pg.262]

Krohnke observed that phenacylpyridinium betaines could be compared to 3-diketones based on their structure and reactivity, in particular, their ability to undergo Michael additions. Since 3-dicarbonyls are important components in the Hantzsch pyridine synthesis, application of these 3-dicarbonyl surrogates in a synthetic route to pyridine was investigated. Krohnke found that glacial acetic acid and ammonium acetate were the ideal conditions to promote the desired Michael addition. For example, N-phenacylpyridinium bromide 50 cleanly participates in a Michael addition with benzalacetophenone 51 to afford 2,4,6-triphenylpyridine 52 in 90% yield. [Pg.311]

The stereochemical outcome of the Michael addition reaction with substituted starting materials depends on the geometry of the a ,/3-unsaturated carbonyl compound as well as the enolate geometry a stereoselective synthesis is possible. " Diastereoselectivity can be achieved if both reactants contain a stereogenic center. The relations are similar to the aldol reaction, and for... [Pg.202]

With the use of chiral reagents a differentiation of enantiotopic faces is possible, leading to an enantioselective reaction. The stereoselective version of the Michael addition reaction can be a useful tool in organic synthesis, for instance in the synthesis of natural products. [Pg.203]

The reaction of a cyclic ketone—e.g. cyclohexanone 1—with methyl vinyl ketone 2 resulting in a ring closure to yield a bicyclic a ,/3-unsaturated ketone 4, is called the Robinson annulation This reaction has found wide application in the synthesis of terpenes, and especially of steroids. Mechanistically the Robinson annulation consists of two consecutive reactions, a Michael addition followed by an Aldol reaction. Initially, upon treatment with a base, the cyclic ketone 1 is deprotonated to give an enolate, which undergoes a conjugate addition to the methyl vinyl ketone, i.e. a Michael addition, to give a 1,5-diketone 3 ... [Pg.240]

Fusion of an all cyclic ring onto the piperidine so as to form a perhydroisoquinoline is apparently consistent with analgesic activity. Synthesis of this agent, ciprefadol (68), starts with the Michael addition of the anion from cyclohexanone 56 onto acrylonitrile (57). Saponification of the nitrile to the corresponding acid ( ) followed by Curtius rearrangement leads to isocyanate Acid... [Pg.119]


See other pages where Michael addition Synthesis is mentioned: [Pg.232]    [Pg.22]    [Pg.563]    [Pg.224]    [Pg.165]    [Pg.232]    [Pg.22]    [Pg.563]    [Pg.224]    [Pg.165]    [Pg.72]    [Pg.318]    [Pg.311]    [Pg.469]    [Pg.279]    [Pg.654]    [Pg.665]    [Pg.752]    [Pg.755]    [Pg.755]    [Pg.296]    [Pg.378]   
See also in sourсe #XX -- [ Pg.4 , Pg.217 ]




SEARCH



Addition Diene syntheses, Michael

Addition synthesis

Additive synthesis

Enantioselective synthesis Michael addition

Enones, P-alkoxycyclic synthesis via Michael addition

Glutarates synthesis via Michael addition

Indole alkaloids synthesis via Michael addition

Intramolecular Michael addition synthesis

Michael addition in the synthesis

Michael addition stereoselective synthesis

Michael synthesis

© 2024 chempedia.info