Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael synthesis

Annwer We should need keto-ester (17) for this, and even then alkylation with secondary halide (18) is iikely to be poor. Alternatively we could use nitrile (19) but this requires the same alkyl halide (IS). The Michael synthesis on page 133 is best. [Pg.143]

Y. Rival, G. Grassy, G. Michael, Synthesis and antibacterial activity of some imidazo[l,2-fl]pyrimidine derivatives, Chem. Pharm. Bull. 40 (1992) 1170-1176. [Pg.488]

Synthesis All by standard steps. Though the Michael addition on A could in the ciy occur at either double bond, the unsubstituted position out of the ring is much more reactive than the disubstituted position in the ring and only the wanted reaction occurs. Bull. Soc. Chim. France. 1955, 8. [Pg.42]

Synthesis An activating group is necessaiy to control the Michael reaction ... [Pg.64]

Synthesis We shall need the usual activating group for both Michael reactions it can t be a CO2R group as there isn t room, so it will have to be an enamine. The synthesis is therefore ... [Pg.67]

Synthesis You will see that there are problems in both the routes found by the analysis. For route a it is known that malonate attacks exclusively the less hindered side of some Michael acceptors ... [Pg.100]

The synthesis of spiro compounds from ketones and methoxyethynyl propenyl ketone exemplifies some regioselectivities of the Michael addition. The electrophilic triple bond is attacked first, next comes the 1-propenyl group. The conjugated keto group is usually least reactive. The ethynyl starting material has been obtained from the addition of the methoxyethynyl anion to the carbonyl group of crotonaldehyde (G. Stork, 1962 B, 1964A). [Pg.74]

Primary and secondary amines also react with epoxides (or in situ produced episulfides )r aziridines)to /J-hydroxyamines (or /J-mercaptoamines or 1,2-diamines). The Michael type iddition of amines to activated C—C double bonds is also a useful synthetic reaction. Rnally unines react readily with. carbonyl compounds to form imines and enamines and with carbo-tylic acid chlorides or esters to give amides which can be reduced to amines with LiAlH (p. Ilf.). All these reactions are often applied in synthesis to produce polycyclic alkaloids with itrogen bridgeheads (J.W. Huffman, 1967) G. Stork, 1963 S.S. Klioze, 1975). [Pg.291]

Acetoxy-l,7-octadiene (40) is converted into l,7-octadien-3-one (124) by hydrolysis and oxidation. The most useful application of this enone 124 is bisannulation to form two fused six-membered ketonesfl 13], The Michael addition of 2-methyl-1,3-cyclopentanedione (125) to 124 and asymmetric aldol condensation using (5)-phenylalanine afford the optically active diketone 126. The terminal alkene is oxidi2ed with PdCl2-CuCl2-02 to give the methyl ketone 127 in 77% yield. Finally, reduction of the double bond and aldol condensation produce the important intermediate 128 of steroid synthesis in optically pure form[114]. [Pg.442]

The method was applied to the synthesis of (-t-)-l9-nortestosterone by the following sequence of reactions. Michael addition of the bisannulation reagent 124 to the optically active keto ester 129 and decarboxylation afforded 130, and subsequent aldol condensation gave 131. Selective Pd-catalyzed oxidation of the terminal double bond afforded the diketone 132 in 78% yield. Reduction of the double bond and aldol condensation gave ( + )-19-nortestosterone (133)[114]. [Pg.442]

The synthesis of cyclohexenone derivatives by Michael addition followed by intramolec ular aldol condensation is called the Robinson annulation, after Sir Robert Robinson who popularized its use By annulatwn we mean the building of a ring onto some start mg molecule (The alternative spelling annelation is also often used)... [Pg.779]

Addition of HCN to unsaturated compounds is often the easiest and most economical method of making organonitnles. An early synthesis of acrylonitrile involved the addition of HCN to acetylene. The addition of HCN to aldehydes and ketones is readily accompHshed with simple base catalysis, as is the addition of HCN to activated olefins (Michael addition). However, the addition of HCN to unactivated olefins and the regioselective addition to dienes is best accompHshed with a transition-metal catalyst, as illustrated by DuPont s adiponitrile process (6—9). [Pg.217]

In the absence of a base, the ayiridine ring can be quaterni2ed and opened by the nucleophile. A pyrroli2idine synthesis, in which such a reaction proceeds intramoleculady followed by a Michael addition (159), is shown as follows ... [Pg.6]

Another impo2rtant P—C-hond-forming reaction is the base-cataly2ed Michael addition to activated double bonds. For example, dimethyl phosphite can be added to dimethyl maleate to yield tetramethylphosphonosucciaate [2788-26-3] (TMPS), an iatermediate ia the synthesis of 2-phosphonobutane-l,2,4-tricarboxyhc acid [37971-36-1] (PBTC) with 98% yield (20). [Pg.361]

Vinylpyridine (23) came into prominence around 1950 as a component of latex. Butadiene and styrene monomers were used with (23) to make a terpolymer that bonded fabric cords to the mbber matrix of automobile tires (25). More recendy, the abiUty of (23) to act as a Michael acceptor has been exploited in a synthesis of 4-dimethylaminopyridine (DMAP) (24) (26). The sequence consists of a Michael addition of (23) to 4-cyanopyridine (15), replacement of the 4-cyano substituent by dimethylamine (taking advantage of the activation of the cyano group by quatemization of the pyridine ring), and base-cataly2ed dequatemization (retro Michael addition). 4-r)imethyl aminopyri dine is one of the most effective acylation catalysts known (27). [Pg.326]

An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

Thiols can be prepared by a variety of methods. The most-utilised of these synthetic methods for tertiary and secondary thiols is acid-catalysed synthesis for normal and secondary thiols, the most-utilised methods are free-radical-initiated, alcohol substitution, or halide substitution for mercaptoalcohols, the most-utilised method is oxhane addition and for mercaptoacids and mercaptonitnles, the most-utilised methods are Michael-type additions. [Pg.10]

An analogous preparation of thioxopenams from dithiocarbonates (75, R = t-C4H2(CH2)2Si, R = OC H ) has also been described (115). Additionally, an iatramolecular Michael addition reaction to form the [2,3] bond has been exploited ia penem synthesis to prepare FCE 22101 (69) (116). [Pg.12]

The Michael addition of nucleophiles to the carbon—carbon double bond of maleimide has been exploited ia the synthesis of a variety of linear polymers through reaction of bismaleimide with bisthiols (39). This method has been used to synthesize ethynyl-terminated imidothioether from the reaction of 4,4 -dimercaptodiphenyl ether [17527-79-6] and A/-(3-ethynylphenyl)maleimide (40). The chemical stmcture of this Michael addition imide thermoset is as follows ... [Pg.27]

The Michael addition reaction of amines and thiols with bismaleimides or functionalized monomaleimides is a versatile tool ia the synthesis of chain-extended maleimide-terroinated prepolymers. These prepolymers generally are soluble ia organic solvents from which they can be processed to prepreg and molded to high quaUty, void-free laminates. [Pg.27]

Industrial ethyl alcohol can be produced synthetically from ethylene [74-85-17, as a by-product of certain industrial operations, or by the fermentation of sugar, starch, or cellulose. The synthetic route suppHes most of the industrial market in the United States. The first synthesis of ethanol from ethylene occurred in 1828 in Michael Faraday s lab in Cambridge (40). [Pg.403]

Remarkably few examples of this type of ring construction are available. The cobalt carbonyl hydride catalyzed hydroformylation of A/,A/ -diallylcarbamates has provided 3-pyrrolidinones (Scheme 61a) (81JOC4433). The pyrrole synthesis shown in Scheme 61b depends on Michael addition of ethyl a-lithioisocyanoacetate to ethyl a-isocyanocrotonate (77LA1174). [Pg.123]

Woodward s total synthesis of cephalosporin C begins with L-cysteine (48) which establishes the chiral center at C-7. The cis geometry at C-6,7 is achieved in intermediate (49) which is cyclized to (50) by treatment with triethylaluminum. The dihydrothiazine ring is constructed by Michael addition to the condensation product of trichloroethyl glyoxylate... [Pg.294]

Benzothiazole, 2-(thiocyanomethylthio)-food preserative, 1, 411 Benzothiazole, 2-trimethylsilyl-reactions, 6, 292 Benzothiazole, 2-vinyl-in organic synthesis, 6, 329 Michael acceptor, 1, 467 2-Benzothiazole, 4-morpholinyl-disulfide... [Pg.557]

Imidazole, 2-ethyl-1 -(o-nitrophenyl)-cyclization, S, 431 Imidazole, 4-ethyl-2-phenyl-oxidation, S, 405 Imidazole, ethynyl-Michael addition, S, 437 Imidazole, 4-ethynyl-2-phenyl-synthesis, S, 494 Imidazole, 1-formyl-reactions, S, 452 Imidazole, 2-formyl-mass spectra, S, 360 Imidazole, 4-formyl-synthesis, S, 475-476 Imidazole, 2-formyl-1,5-dimethyl-mass spectra, S, 360 3-oxide... [Pg.651]


See other pages where Michael synthesis is mentioned: [Pg.23]    [Pg.74]    [Pg.932]    [Pg.1252]    [Pg.1275]    [Pg.191]    [Pg.23]    [Pg.74]    [Pg.932]    [Pg.1252]    [Pg.1275]    [Pg.191]    [Pg.85]    [Pg.20]    [Pg.72]    [Pg.276]    [Pg.318]    [Pg.311]    [Pg.393]    [Pg.468]    [Pg.469]    [Pg.279]    [Pg.133]    [Pg.575]   
See also in sourсe #XX -- [ Pg.190 , Pg.197 ]




SEARCH



1.5- Dicarbonyl compounds, synthesis Michael reaction

Addition Diene syntheses, Michael

Diastereoselective synthesis Michael acceptors

Domino Michael-aldol reactions chromene synthesis

Enantioselective synthesis Michael addition

Enones, P-alkoxycyclic synthesis via Michael addition

Glutarates synthesis via Michael addition

Indole alkaloids synthesis via Michael addition

Intramolecular Michael addition synthesis

Michael addition in the synthesis

Michael addition stereoselective synthesis

Michael-type ring synthesi

Prostaglandin synthesis Michael reaction

Sulfa-Michael reactions synthesis

Synthesis Michael additions

Synthesis of Michael acceptor

© 2024 chempedia.info