Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Symmetrical Ion-Selective Electrodes

The potential profile through the membrane that is placed between the sample and the internal reference solution was shown in Fig. 6.3. The composition of the internal solution can be optimized with respect to the membrane and the sample solution. In the interest of symmetry, it is advisable to use the same solvent inside the electrode as is in the sample. This solution also contains the analyte ion in the concentration, which is usually in the middle of the dynamic range of the response of the membrane. The ohmic contact with the internal reference electrode is provided by adding a salt that contains the appropriate ion that forms a fast reversible couple with the solid conductor. In recent designs, gel-forming polymers have been added into the internal compartment. They do not significantly alter the electrochemistry, but add mechanical stability and convenience of handling. [Pg.151]

The obvious advantage of the symmetrical arrangement is that the processes at all internal interfaces can be well defined and that most nonidealities at the mem-brane/solution interface tend to cancel out. Because the volume of the internal reference compartment is typically a few milliliters, the electrode does not suffer from exposure to electrically neutral compounds that would penetrate the membrane and change the composition of this solution. This type of potentiometric ion sensor has been used in the majority of basic studies of ion-selective electrodes. Most commercial ion-selective electrodes are also of this type. The drawbacks of this arrangement are also related to the presence of the internal solution and to its volume. Mainly for this reason, it is not conveniently possible to miniaturize it and to integrate it into a multisensor package. [Pg.151]


Symmetrical placement of the ion-selective membrane is typical for the conventional ISE. It helped us to define the operating principles of these sensors and most important, to highlight the importance of the interfaces. Although such electrodes are fundamentally sound and proven to be useful in practice, the future belongs to the miniaturized ion sensors. The reason for this is basic there is neither surface area nor size restriction implied in the Nernst or in the Nikolskij-Eisenman equations. Moreover, multivariate analysis (Chapter 10) enhances the information content in chemical sensing. It is predicated by the miniaturization of individual sensors. The miniaturization has led to the development of potentiometric sensors with solid internal contact. They include Coated Wire Electrodes (CWE), hybrid ion sensors, and ion-sensitive field-effect transistors. The internal contact can be a conductor, semiconductor, or even an insulator. The price to be paid for the convenience of these sensors is in the more restrictive design parameters. These must be followed in order to obtain sensors with performance comparable to the conventional symmetrical ion-selective electrodes. [Pg.151]


See other pages where Symmetrical Ion-Selective Electrodes is mentioned: [Pg.151]   


SEARCH



Ion electrodes

Ion-selective electrode selectivity

Ion-selective electrodes

© 2024 chempedia.info