Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactant solutions, thermodynamics enthalpy

See T. E. Burchfield and E. M. Woolley, Model for thermodynamics of ionic surfactant solutions. 1. Osmotic and activity coefficients , J. Phys. Chem, 88, 2149-2155 (1984) and E. M. Woolley and T. E. Burchfield, Model for Thermodynamics of Ionic Surfactant Solutions 2. Enthalpies, Heat Capacities, and Volumes , J. Phys. Chem., 88, 2155-2163 (1984). [Pg.358]

Medium-chain alcohols such as 2-butoxyethanol (BE) exist as microaggregates in water which in many respects resemble micellar systems. Mixed micelles can be formed between such alcohols and surfactants. The thermodynamics of the system BE-sodlum decanoate (Na-Dec)-water was studied through direct measurements of volumes (flow denslmetry), enthalpies and heat capacities (flow microcalorimetry). Data are reported as transfer functions. The observed trends are analyzed with a recently published chemical equilibrium model (J. Solution Chem. 13,1,1984). By adjusting the distribution constant and the thermodynamic property of the solute In the mixed micelle. It Is possible to fit nearly quantitatively the transfer of BE from water to aqueous NaDec. The model Is not as successful for the transfert of NaDec from water to aqueous BE at low BE concentrations Indicating self-association of NaDec Induced by BE. The model can be used to evaluate the thermodynamic properties of both components of the mixed micelle. [Pg.79]

Thermodynamic measurements in dilute hydrocarbon surfactant solutions give negative values for the enthalpy change on micellization (AH0mic), and the entropy change (AS°mic) in the negative range (see Chapter 1, Table 1.1 for comparison). [Pg.72]

The approach to the thermodynamics of solubilization in micellar solutions is based on the determination of a given partial molar property of the solute (volume, enthalpy, heat capacity, compressibility) as a function of the surfactant content. The simplest approach is to use the pseudophase model. The partial molar quantity, L will thus be an average value of Y in the micellar and aqueous phases, as described by... [Pg.359]

As mentioned above, the process of micellization is one of the most important characteristics of surfactant solution and hence it is essential to understand its mechanism (the driving force for micelle formation). This requires analysis of the dynamics of the process (i.e. the kinetic aspects) as well as the equilibrium aspects whereby the laws of thermodynamics may be applied to obtain the free energy, enthalpy and entropy of micellization. Below a brief description of both aspects will be given and this will be followed by a picture of the driving force for micelle formation. [Pg.27]

Guillaume et al. [69] presented a high performance liquid chromatographic method for an association study of miconazole and other imidazole derivatives in surfactant micellar using a hydrophilic reagent, Montanox DF 80. The thermodynamic results obtained showed that imidazole association in the surfactant micelles was effective over a concentration of surfactant equal to 0.4 pM. In addition, an enthalpy-entropy compensation study revealed that the type of interaction between the solute and the RP-18 stationary phase was independent of the molecular structure. The thermodynamic variations observed were considered the result of equilibrium displacement between the solute and free ethanol (respectively free surfactant) and its clusters (respective to micelles) created in the mobile phase. [Pg.49]

Most of the studies on thermodynamics of mixed micellar systems are based on the variation of the critical micellar concentration (CMC) with the relative concentration of both components of the mixed micelles (1-4). Through this approach It Is possible to obtain the free energies of formation of mixed micelles. However, at best, the sign and magnitude of the enthalpies and entropies can be obtained from the temperature dependences of the CMC. An Investigation of the thermodynamic properties of transfer of one surfactant from water to a solution of another surfactant offers a promising alternative approach ( ), and, recently, mathematical models have been developed to Interpret such properties (6-9). [Pg.79]

Where this factor plays a role, the hydrophobic interaction between the hydrocarbon chains of the surfactant and the non-polar parts of protein functional groups are predominant. An example of this effect is the marked endothermic character of the interactions between the anionic CITREM and sodium caseinate at pH = 7.2 (Semenova et al., 2006), and also between sodium dodecyl sulfate (SDS) and soy protein at pH values of 7.0 and 8.2 (Nakai et al., 1980). It is important here to note that, when the character of the protein-surfactant interactions is endothermic (/.< ., involving a positive contribution from the enthalpy to the change in the overall free energy of the system), the main thermodynamic driving force is considered to be an increase in the entropy of the system due to release into bulk solution of a great number of water molecules. This entropy... [Pg.178]

Initially, the vapor pressure measurements appear to be the most direct, but even here some assumptions are needed. The amount of alcohol in the micellar phase needs to be determined. To do this the difference in vapor pressure between a pure aqueous and a micellar solution is measured. If the ions of the surfactant salts out alcohol, the vapor pressure of pure water is not the correct comparison, and this could lead to lower partition coefficients. Thermodynamic data are well suited for model calculations, and both the models of DeLisi et al. ° ° and Hetu et al. fit the data well. Although in reasonable internal agreement, the partition coefficients calculated from partial molar volumes differ from those calculated from enthalpies the first is 927 or 944, the latter... [Pg.361]

In the work presented here, these processes have been studied primarily by calorimetry. Planned measurements of partial specific heat and partial molal volume will give additional thermodynamic data on the structure of micellar systems. Heat capacity measurements will allow "simple" extrapolation of measured enthalpy terms to higher temperatures. In addition, a direct measure of the effect of temperature variation is of interest for solution structure studies. Partial molal volume measurements give information on the packing of surfactant monomers and micelles within the water structure. The effect of cosurfactants on the partial molal volume will be of particular interest. [Pg.94]

The enthalpy of micellization of many surfactants in aqueous solution has been determined in the past, using mostly cell type and flow microcalorimeters [6-8]. These determinations were based on measurements of the excess heat associated with dilution of a surfactant from a concentration above the cmc to a concentration below the cmc, which results in demicellization of the preexisting micelles. One diffleulty with these determinations relates to the dependence of the heat evolution (AQ) on the initial and final concentrations, probably due to secondary self-aggregations of the surfactants at high concentrations and/or pre-micellar dimer formation at low surfactant concentrations [6,9], These difficulties are at least partially responsible for the lack of consistent data on the thermodynamics of micelle formation [6]. [Pg.296]

Chapter 9, by Kiraly (Hungary), attempts to clarify the adsorption of surfactants at solid/solution interfaces by calorimetric methods. The author addresses questions related to the composition and structure of the adsorption layer, the mechanism of the adsorption, the kinetics, the thermodynamics driving forces, the nature of the solid surface and of the surfactant (ionic, nonionic, HLB, CMC), experimental conditions, etc. He describes the calorimetric methods used, to elucidate the description of thermodynamic properties of surfactants at the boundary of solid-liquid interfaces. Isotherm power-compensation calorimetry is an essential method for such measurements. Isoperibolic heat-flux calorimetry is described for the evaluation of adsorption kinetics, DSC is used for the evaluation of enthalpy measurements, and immersion microcalorimetry is recommended for the detection of enthalpic interaction between a bare surface and a solution. Batch sorption, titration sorption, and flow sorption microcalorimetry are also discussed. [Pg.531]

Attempt of correlating the molecular structures and experimental data, for example, cmc, and the thermodynamic parameters of micellization (enthalpy, entropy, and free energy), rests on the assumption that they have been calculated by a consistent procedure this point needs further consideration. At the outset, it should be noticed that there are systematic differences between the results, for example, the cmc, obtained by using distinct experimental techniques. The reason is that the function plotted (absorbance of micelle-solubilized dye, conductivity, surface tension, light scattering intensity, etc.) versus [surfactant] measures different averages of the various species in solution. Examples are surface tension that primarily depends on monomer concentration and solubilization of (water-insoluble) dye that depends mainly on the total amount of micelles present. The consequence is that cmc measured from surface tension will always be lower than cmc measured by dye solubilization [28]. In fact, values of the cmc of the same surfactant, determined by different groups, by the same technique show differences. For example, fifty-four erne s determined by the same technique for Cj NMe Br (measurements at 25°C) differ by 22% [29]. [Pg.70]

An essentially equivalent approach to that of small-systems thermodynamics has been formulated by Corkill and co-workers and applied to systems of nonionic surfactants [94,176]. As with the small-systems approach, this multiple-equilibrium model considers equilibria between all micellar species present in solution rather than a single micellar species, as was considered by the mass-action theory. The intrinsic properties of the individual micellar species are then removed from the relationships by a suitable averaging procedure. The standard free energy and enthalpy of micellization are given by equations of similar form to Equations 3.44 and 3.45 and are shown to approximate satisfactorily to the appropriate mass-action equations for systems in which the mean aggregation number exceeds 20. [Pg.107]


See other pages where Surfactant solutions, thermodynamics enthalpy is mentioned: [Pg.4]    [Pg.388]    [Pg.248]    [Pg.81]    [Pg.81]    [Pg.336]    [Pg.486]    [Pg.40]    [Pg.807]    [Pg.479]    [Pg.233]    [Pg.31]    [Pg.166]    [Pg.168]    [Pg.186]    [Pg.202]    [Pg.30]    [Pg.166]    [Pg.61]    [Pg.246]    [Pg.350]    [Pg.258]    [Pg.264]    [Pg.22]   


SEARCH



Enthalpy solution

Surfactant solutions

Surfactant solutions, thermodynamics

Surfactant thermodynamics

Thermodynamics enthalpy

© 2024 chempedia.info