Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfaces thermal expansion coefficient

The fluorine content, density, critical surface energy, glass transitions, thermal expansion coefficient above and below the glass transition, and 300°C isothermal thermogravimetric stabilities of the fluoromethylene cyanate ester resin system with n = 3, 4, 6, 8, 10 are summarized Table 2.2. Also included for the purpose of comparison are the corresponding data for the aromatic cyanate ester resin based on the dicyanate of 6F bisphenol A (AroCy F, Ciba Geigy). [Pg.32]

The thermal expansion coefficient of bulk silicon is positive at RT (2.6 x 1CT6 K-1), but becomes negative below 120 K. The thermal expansion coefficient of micro PS for heating from 290 to 870 K is found to be negative (-4.3x 10 6 KT1), which can be ascribed to hydrogen desorption and oxidation of the inner surface [Di7]. For meso PS the thermal expansion coefficient was found to increase with porosity in the temperature regime between 90 K and 300 K, from 0.4xl0-6 K 1 to... [Pg.114]

A study was made of the effects of processing conditions and of blowing and nucleating agents and external lubricants on the apparent density, mechanical properties, linear thermal expansion coefficient and surface roughness of extruded cellular MDPE. Based on the results, recommendations were formulated for the properties of cellular MDPE pipes for the protection of light conducting cables. 16 refs. (Translation of Polimery, Tworzywa Wielkoczasteczkowe, No. 10, 1996, p.580). [Pg.84]

Figure 12.4 Bending response of a cantilever (as measured by the voltage output from a position-sensitive detector) to applied voltage pulse with and without TNT adsorbed on the surfaces. The bending of the uncoated cantilever follows the time profile of the applied voltage pulse (except the lengthening of the rise and fall times) and is presumably due to the difference between the thermal expansion coefficients of silicon and the doping material. The exothermic nature of the TNT deflagration event is clear due to the enhancement in bending of the cantilever. Figure 12.4 Bending response of a cantilever (as measured by the voltage output from a position-sensitive detector) to applied voltage pulse with and without TNT adsorbed on the surfaces. The bending of the uncoated cantilever follows the time profile of the applied voltage pulse (except the lengthening of the rise and fall times) and is presumably due to the difference between the thermal expansion coefficients of silicon and the doping material. The exothermic nature of the TNT deflagration event is clear due to the enhancement in bending of the cantilever.
Kg, gas film coefficient A, surface area of water body 7), diffusion coefficient of compound in air W, wind velocity at 2 m above the mean water surface v, kinematic viscosity of air a, thermal diffusion coefficient of air g, acceleration of gravity thermal expansion coefficient of moist air AP, temperature difference between water surface and 2 m height APv virtual temperature difference between water surface and 2 m height. [Pg.257]

Composite-based PTC thermistors are potentially more economical. These devices are based on a combination of a conductor in a semicrystalline polymer—for example, carbon black in polyethylene. Other fillers include copper, iron, and silver. Important filler parameters in addition to conductivity include particle size, distribution, morphology, surface energy, oxidation state, and thermal expansion coefficient. Important polymer matrix characteristics in addition to conductivity include the glass transition temperature, Tg, and thermal expansion coefficient. Interfacial effects are extremely important in these materials and can influence the ultimate electrical properties of the composite. [Pg.595]

In air, the mechanical properties are influenced by the oxidation processes [543], In materials with a fine overall porosity the oxidation at > 1100 °C closes the pores with the help of an Si02 surface layer. This layer protects the material from further oxidation and heals surface defects. This and the formation of compressive stresses due to the different thermal expansion coefficients between Si02 and RBSN are the reasons for strength increase after oxidation. Materials with a high amount of macropores (>1 pm) oxidise not only at the surface but also inside the volume due to longer closing times of the surface pores. In consequence these oxidation mechanisms result in more intensive oxidation at low temperatures < 1100 °C, due to the slow rate of pore closure and higher internal oxidation. [Pg.136]

LGMs of the AT/alumina and AT/ZTA displayed some very interesting properties which include excellent machinability, low thermal expansion coefficient, improved thermal shock resistance, low hardness (about 5 GPa), low Young s modulus (E) (250 GPa) and excellent flaw tolerance [Pratapa, 1997 Pratapa Low, 1998 Skala, 2000 Manurung, 2001], These materials appeared to display a large degree of near-surface quasi-plasticity under the Hertzian or the Vickers indenter which effectively inhibits the formation and propagation of cracks. The ductile behaviour of these materials was... [Pg.146]

There are some density data for solid salts above ambient temperature which are given in the form of thermal expansion coefficients. These have been listed when they seemed reliable. Above the melting point, density data are scarce. Most are available for alkali halides but those available for salts are taken from the critically evaluated compilation Janz, G.J., Thermodynamics and transport properties for molten salts, correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data,./. Phys. Chem. Reference Data, 17, Suppl. 2, 1988. [Pg.20]


See other pages where Surfaces thermal expansion coefficient is mentioned: [Pg.47]    [Pg.405]    [Pg.520]    [Pg.213]    [Pg.396]    [Pg.384]    [Pg.223]    [Pg.154]    [Pg.151]    [Pg.62]    [Pg.105]    [Pg.417]    [Pg.312]    [Pg.18]    [Pg.32]    [Pg.13]    [Pg.18]    [Pg.63]    [Pg.281]    [Pg.98]    [Pg.53]    [Pg.749]    [Pg.47]    [Pg.405]    [Pg.520]    [Pg.298]    [Pg.71]    [Pg.504]    [Pg.113]    [Pg.131]    [Pg.341]    [Pg.588]    [Pg.248]    [Pg.35]    [Pg.165]    [Pg.84]    [Pg.396]    [Pg.74]    [Pg.60]   
See also in sourсe #XX -- [ Pg.453 ]




SEARCH



SURFACE EXPANSION

Thermal coefficient

Thermal expansion coefficients

Thermall expansion coefficient

© 2024 chempedia.info