Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface state bulk phase

However, it is not practical to set the gas temperature in steady state without equally setting the temperature of the surface and bulk phases hounding the gas. Consideration of the response of the system as a vacuum environment can then provide a sufftciendy precise prediction of the pressure P and the surface coverage 9 at temperature Tfor molecules of a known species in a known state on a known surface. For example, an isotherm is estabhshed between the surface of the condensed and the gaseous phases, depending, eg, on the heat of desorption. For submonolayer coverage on a... [Pg.366]

Although by now a large number of electrochemical systems have been examined using both SERS and IRRAS, including some common to both techniques (2b), the conditions employed are usually sufficiently different (e.g. disparate surface state, adsorbate concentrations) so to preclude a quantitative comparison of the spectral responses. One further hindrance to such comparisons is that it usually is difficult to remove entirely the contribution to the infrared spectra from solution-phase species. Two types of approaches are commonly used in IRRAS with this objective in mind. Firstly, modulating the infrared beam between s- and p-polarization can achieve a measure of demarcation between surface and bulk-phase components since considerably greater infrared absorption will occur for the former, but not the latter, species for p- versus s-polarized light (2.81. However, a complication is that the "surface... [Pg.304]

To calculate standard parameters of adsorption, AG°, A//, and AS°, it is necessary to define standard states of the surface and bulk phases. If one uses the... [Pg.87]

Defay et al. (1977) explained that in a non-equilibrium state the surface energy is determined differently from in an equilibrium. Non-equilibrium adsorption layers can only be described exactly by accounting for the interactions between the molecules in the surface and bulk phases. [Pg.494]

In the preceding derivation, the repulsion between overlapping double layers has been described by an increase in the osmotic pressure between the two planes. A closely related but more general concept of the disjoining pressure was introduced by Deijaguin [30]. This is defined as the difference between the thermodynamic equilibrium state pressure applied to surfaces separated by a film and the pressure in the bulk phase with which the film is equilibrated (see section VI-5). [Pg.181]

The state of an adsorbate is often described as mobile or localized, usually in connection with adsorption models and analyses of adsorption entropies (see Section XVII-3C). A more direct criterion is, in analogy to that of the fluidity of a bulk phase, the degree of mobility as reflected by the surface diffusion coefficient. This may be estimated from the dielectric relaxation time Resing [115] gives values of the diffusion coefficient for adsorbed water ranging from near bulk liquids values (lO cm /sec) to as low as 10 cm /sec. [Pg.589]

A third definition of surface mobility is essentially a rheological one it represents the extension to films of the criteria we use for bulk phases and, of course, it is the basis for distinguishing states of films on liquid substrates. Thus as discussed in Chapter IV, solid films should be ordered and should show elastic and yield point behavior liquid films should be coherent and show viscous flow gaseous films should be in rapid equilibrium with all parts of the surface. [Pg.711]

Characterization. The proper characterization of coUoids depends on the purposes for which the information is sought because the total description would be an enormous task (27). The foUowiag physical traits are among those to be considered size, shape, and morphology of the primary particles surface area number and size distribution of pores degree of crystallinity and polycrystaUinity defect concentration nature of internal and surface stresses and state of agglomeration (27). Chemical and phase composition are needed for complete characterization, including data on the purity of the bulk phase and the nature and quaHty of adsorbed surface films or impurities. [Pg.395]

For correlating relative Eamo values with values in the UHV scale (0 values), two quantities must be known 0 and A0. Contact potential measurements at metal/solution interfaces can be measured.4 In that case the interfacial structure is exactly that in the electrochemical situation (bulk liquid phase, room temperature). However, 0 to convert E into 0 must be independently known. It may happen that the metal surface state is not exactly the same during the measurements of 0 and A0. [Pg.11]

The rapid rise in computer speed over recent years has led to atom-based simulations of liquid crystals becoming an important new area of research. Molecular mechanics and Monte Carlo studies of isolated liquid crystal molecules are now routine. However, care must be taken to model properly the influence of a nematic mean field if information about molecular structure in a mesophase is required. The current state-of-the-art consists of studies of (in the order of) 100 molecules in the bulk, in contact with a surface, or in a bilayer in contact with a solvent. Current simulation times can extend to around 10 ns and are sufficient to observe the growth of mesophases from an isotropic liquid. The results from a number of studies look very promising, and a wealth of structural and dynamic data now exists for bulk phases, monolayers and bilayers. Continued development of force fields for liquid crystals will be particularly important in the next few years, and particular emphasis must be placed on the development of all-atom force fields that are able to reproduce liquid phase densities for small molecules. Without these it will be difficult to obtain accurate phase transition temperatures. It will also be necessary to extend atomistic models to several thousand molecules to remove major system size effects which are present in all current work. This will be greatly facilitated by modern parallel simulation methods that allow molecular dynamics simulations to be carried out in parallel on multi-processor systems [115]. [Pg.61]

The monolayer stability limit is defined as the maximum pressure attainable in a film spread from solution before the monolayer collapses (Gaines, 1966). This limit may in some cases correspond directly to the ESP, suggesting that the mechanism of film collapse is a return to the bulk crystalline state, or may be at surface pressures higher than the ESP if the film is metastable with respect to the bulk phase. In either case, the monolayer stability limit must be known before such properties as work of compression, isothermal compressibility, or monolayer viscosity can be determined. [Pg.54]

Although thermodynamically favorable, reductive dissolution of Fe(III)(hydr)oxides by some metastable ligands (even those, such as oxalate, that can form surface complexes) does not occur in the absence of light. The photochemical pathway is depicted in Fig. 9.3e. In the presence of light, surface complex formation is followed by electron transfer via an excited state (indicated by ) either of the iron oxide bulk phase or of the surface complex. (Light-induced reactions will be discussed in Chapter 10.)... [Pg.316]

The final stage in getting a molecule from the bulk phase outside a pellet on to the interior surface is the adsorption step itself. Where adsorption is physical in nature, this step is unlikely to affect the overall rate. An equilibrium state is likely to exist between adsorbate molecules immediately above a surface and those on it. An adsorption isotherm such as equation 17.4 or 17.35 may be applied. [Pg.1007]

Any liquid surface, especially aqueous solutions, will exhibit asymmetric dipole or ions distribution at the surface as compared to the bulk phase. If SDS is present in the bulk solution, then we will expect that the surface will be covered with SD ions. This would impart a negative surface charge (as is also found from experiments). It is thus seen that the addition of SDS to water not only changes (reduces) surface tension but also imparts negative surface potential. Of course, the surface molecules of methane (in liquid state) will obviously exhibit symmetry in comparison to water molecules. This characteristic can also be associated to the force field resulting from induced dipoles of the adsorbed molecules or spread lipid films (Adamson and Gast, 1997 Birdi, 1989). [Pg.82]

Elemental and Structural Characterization Many oxidation reactions occur on mixed oxides of complex composition, such as SbSn(Fe)0, VPO, FePO, heteropolycompounds, etc. Very often the active surfaces are not simple terminations of the three dimensional structure of the bulk phases. There is need to extensively apply structural characterization techniques to the study of catalysts, if possible in their working state. [Pg.7]

It is important to remember the significance of irv. It refers specifically to the equilibrium between two surface states. There is a danger of confusing ttv with the equilibrium spreading pressure ire, introduced in Chapter 6. The latter is the pressure of the equilibrium film that exists in the presence of excess bulk material on the surface. It is the equilibrium spreading pressure that is involved in the modification of Young s equation (Equation (6.49)), for which a bulk phase is present on the substrate. For tetradecanol at 15°C, the equilibrium spreading pressure is about 4.5 10 2 N m so ire and irv are very different from one another. [Pg.316]

The statistical thermodynamic approach to the derivation of an adsorption isotherm goes as follows. First, suitable partition functions describing the bulk and surface phases are devised. The bulk phase is usually assumed to be that of an ideal gas. From the surface phase, the equation of state of the two-dimensional matter may be determined if desired, although this quantity ceases to be essential. The relationships just given are used to evaluate the chemical potential of the adsorbate in both the bulk and the surface. Equating the surface and bulk chemical potentials provides the equilibrium isotherm. [Pg.420]

How is an equation of state related to an adsorption isotherm What is the basic thermodynamic principle that governs the equilibrium between the surface phase and bulk phase ... [Pg.455]

The complexity of the situation may be illustrated by tracing the development of our knowledge of chromia catalysts. It is now clear that Cr ions on the surface may occur in valence states from Cr11 to CrVI all intermediate valence states have been shown to occur, and all are possible in a regime of temperature and gas composition where the thermodynamically stable bulk phase is Cr2C>3. [Pg.256]


See other pages where Surface state bulk phase is mentioned: [Pg.245]    [Pg.88]    [Pg.902]    [Pg.25]    [Pg.377]    [Pg.126]    [Pg.242]    [Pg.415]    [Pg.433]    [Pg.19]    [Pg.147]    [Pg.61]    [Pg.378]    [Pg.167]    [Pg.92]    [Pg.184]    [Pg.126]    [Pg.240]    [Pg.250]    [Pg.59]    [Pg.70]    [Pg.27]    [Pg.116]    [Pg.42]    [Pg.113]    [Pg.178]    [Pg.786]    [Pg.31]    [Pg.256]    [Pg.279]    [Pg.614]   
See also in sourсe #XX -- [ Pg.494 , Pg.495 , Pg.496 ]




SEARCH



Bulk phase

Bulk states

Surface State and Influence of Bulk Phase

Surface phase

Surface states

© 2024 chempedia.info