Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface reactions rapid

The course of a surface reaction can in principle be followed directly with the use of various surface spectroscopic techniques plus equipment allowing the rapid transfer of the surface from reaction to high-vacuum conditions see Campbell [232]. More often, however, the experimental observables are the changes with time of the concentrations of reactants and products in the gas phase. The rate law in terms of surface concentrations might be called the true rate law and the one analogous to that for a homogeneous system. What is observed, however, is an apparent rate law giving the dependence of the rate on the various gas pressures. The true and the apparent rate laws can be related if one assumes that adsorption equilibrium is rapid compared to the surface reaction. [Pg.724]

The corrosion behavior of plutonium metal has been summarized (60,61). a-Plutonium oxidizes very slowly in dry air, typically <10 mm/yr. The rate is accelerated by water vapor. Thus, a bright metal surface tarnishes rapidly in normal environments and a powdery surface soon forms. Eventually green PUO2 [12059-95-9] covers the surface. Plutonium is similar to uranium with respect to corrosion characteristics. The stabilization of 5-Pu confers substantial corrosion resistance to Pu in the same way that stabilization of y-U yields a more corrosion-resistant metal. The reaction of Pu metal with Hquid water produces both oxides and oxide-hydrides (62). The reaction with water vapor above 100°C also produces oxides and hydride (63). [Pg.196]

TABLE 7-3 Adsorption-rate Controlling (Rapid Surface Reaction)... [Pg.693]

For the first assumption, the value of Kw for the shift appears to be too high. It must be this high because it is necessary to make C02 appear while both C02 and CO are being consumed rapidly by methanation. The data may be tested to see if the indicated rate appears unreasonable from the standpoint of mass transfer to the gross catalyst surface. Regardless of the rate of diffusion in catalyst pores or the surface reaction rate, it is unlikely that the reaction can proceed more rapidly than material can reach the gross pill surface unless the reaction is a homogeneous one that is catalyzed by free radicals strewn from the catalyst into the gas stream. [Pg.77]

The formation of Grignard reagents takes place at the metal surface. Reaction commences with an electron transfer to the halide and decomposition of the radical ion, followed by rapid combination of the organic group with a magnesium ion.1 It... [Pg.620]

Transfer hydrogenolysis of benzyl acetate was studied on Pd/C at room temperature using different formate salts.244 Hydrogen-donating abilities were found to depend on the counterion K+ > NH4 + > Na+ > Li+ > H+. Formate ion is the active species in this reaction. Adsorption of the formate ion on the Pd metal surface leads to dissociative chemisorption resulting in the formation of PdH- and C02. The kinetic isotope effect proves that the dissociative chemisorption of formate is the rate-limiting step. The adsorption and the surface reaction of benzyl acetate occurs very rapidly. [Pg.151]

Category II. The rate of chemical reaction on the surface is so rapid that adsorption equilibrium is not achieved, but a steady-state condition is reached in which the amount of adsorbed material remains constant at some value less than the equilibrium value. This value is presumed to be that corresponding to equilibrium for the surface reaction at the appropriate fractional coverages of the other species involved in the surface reaction. The rate of adsorption or desorption of one species is presumed to be much slower than that of any other species. This step is then the rate limiting step in the overall reaction. [Pg.182]

Hougen- Watson Models for Cases where Adsorption and Desorption Processes are the Rate Limiting Steps. When surface reaction processes are very rapid, the overall conversion rate may be limited by the rate at which adsorption of reactants or desorption of products takes place. Usually only one of the many species in a reaction mixture will not be in adsorptive equilibrium. This generalization will be taken as a basis for developing the expressions for overall conversion rates that apply when adsorption or desorption processes are rate limiting. In this treatment we will assume that chemical reaction equilibrium exists between various adsorbed species on the catalyst surface, even though reaction equilibrium will not prevail in the fluid phase. [Pg.187]

Shen et al. (142) used an isotopic transient technique and XPS to investigate the partial oxidation of CH4 to synthesis gas on a Ni/Al203 catalyst at 973 K. The results show that CH4 can decompose easily and quickly to give H2 and Ni C on the reduced catalyst, and that Ni vC can react rapidly with NiO, formed by the oxidation of nickel by 02 to give CO or C02, depending on the relative concentration of Ni,C around NiO on the catalyst surface. The conclusion drawn by the authors (142) was not only that H2 and CO are primary products in the partial oxidation of CH4, but also that most of the CO2 is also the primary product of the surface reaction between Ni,C and NiO. In contrast, the kinetics results of Verykios et al. (143) indicated that the reaction on the Ni/La203 catalyst mainly takes place via the sequence of total oxidation to CO2 and H20, followed by... [Pg.339]

Reactions of 0 with Alkenes. Surface reactions between C2 to Ci alkenes and 0 ions on MgO are also rapid at 25°C, with a stoichiometry of one alkene reacted per one 0 ion (19). As reported by Ben Taarit et al.(l), the reaction of C2Hi with 0 gives rise to an EPR spectrum which has been attributed to the complex... [Pg.136]

Reactions between alkenes and 07 on MgO also lead to nonselect ive oxidation (21). One would hope to gain insight into the possible role of this ion in epoxidation catalysis, but rapid surface reactions, for example between ethylene oxide and MgO, make it difficult to obtain such information. The principal reaction products, CHi and CO2, are believed to be formed in a manner analogous to reactions 12-15. The initial hydrogen abstraction again is effected by the 07 ion. [Pg.138]

Chemical/Physical. Matheson and Tratnyek (1994) studied the reaction of fine-grained iron metal in an anaerobic aqueous solution (15 °C) containing chloroform (107 pM). Initially, chloroform underwent rapid dehydrochlorination forming methylene chloride and chloride ions. As the concentration of methylene chloride increased, the rate of reaction appeared to decrease. After 140 h, no additional products were identified. The authors reported that reductive dehalogenation of chloroform and other chlorinated hydrocarbons used in this study appears to take place in conjunction with the oxidative dissolution or corrosion of the iron metal through a diffusion-limited surface reaction. [Pg.295]

Based on the results of Berner (1978, 1983), Sparks (1988) showed that, in transport-controlled kinetics, the dissolution ions are detached very rapidly and accumulate to form a saturated solution adjacent to the surface. In surface reaction-... [Pg.39]


See other pages where Surface reactions rapid is mentioned: [Pg.729]    [Pg.920]    [Pg.1824]    [Pg.271]    [Pg.351]    [Pg.289]    [Pg.227]    [Pg.504]    [Pg.118]    [Pg.260]    [Pg.1136]    [Pg.265]    [Pg.917]    [Pg.152]    [Pg.709]    [Pg.199]    [Pg.171]    [Pg.177]    [Pg.294]    [Pg.162]    [Pg.36]    [Pg.152]    [Pg.230]    [Pg.44]    [Pg.370]    [Pg.8]    [Pg.187]    [Pg.46]    [Pg.228]    [Pg.551]    [Pg.135]    [Pg.233]    [Pg.118]    [Pg.241]    [Pg.307]    [Pg.261]    [Pg.9]   
See also in sourсe #XX -- [ Pg.777 , Pg.778 ]




SEARCH



Rapid reactions

Reactions, rapidity

© 2024 chempedia.info