Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption surface heterogeneity

Surface heterogeneity may be inferred from emission studies such as those studies by de Schrijver and co-workers on P and on R adsorbed on clay minerals [197,198]. In the case of adsorbed pyrene and its derivatives, there is considerable evidence for surface mobility (on clays, metal oxides, sulfides), as from the work of Thomas [199], de Mayo and co-workers [200], Singer [201] and Stahlberg et al. [202]. There has also been evidence for ground-state bimolecular association of adsorbed pyrene [66,203]. The sensitivity of pyrene to the polarity of its environment allows its use as a probe of surface polarity [204,205]. Pyrene or ofter emitters may be used as probes to study the structure of an adsorbate film, as in the case of Triton X-100 on silica [206], sodium dodecyl sulfate at the alumina surface [207] and hexadecyltrimethylammonium chloride adsorbed onto silver electrodes from water and dimethylformamide [208]. In all cases progressive structural changes were concluded to occur with increasing surfactant adsorption. [Pg.418]

The first term on the right is the common inverse cube law, the second is taken to be the empirically more important form for moderate film thickness (and also conforms to the polarization model, Section XVII-7C), and the last term allows for structural perturbation in the adsorbed film relative to bulk liquid adsorbate. In effect, the vapor pressure of a thin multilayer film is taken to be P and to relax toward P as the film thickens. The equation has been useful in relating adsorption isotherms to contact angle behavior (see Section X-7). Roy and Halsey [73] have used a similar equation earlier, Halsey [74] allowed for surface heterogeneity by assuming a distribution of Uq values in Eq. XVII-79. Dubinin s equation (Eq. XVII-75) has been mentioned another variant has been used by Bonnetain and co-workers [7S]. [Pg.629]

Brunauer (see Refs. 136-138) defended these defects as deliberate approximations needed to obtain a practical two-constant equation. The assumption of a constant heat of adsorption in the first layer represents a balance between the effects of surface heterogeneity and of lateral interaction, and the assumption of a constant instead of a decreasing heat of adsorption for the succeeding layers balances the overestimate of the entropy of adsorption. These comments do help to explain why the model works as well as it does. However, since these approximations are inherent in the treatment, one can see why the BET model does not lend itself readily to any detailed insight into the real physical nature of multilayers. In summary, the BET equation will undoubtedly maintain its usefulness in surface area determinations, and it does provide some physical information about the nature of the adsorbed film, but only at the level of approximation inherent in the model. Mainly, the c value provides an estimate of the first layer heat of adsorption, averaged over the region of fit. [Pg.653]

On the other hand, as applied to the submonolayer region, the same comment can be made as for the localized model. That is, the two-dimensional non-ideal-gas equation of state is a perfectly acceptable concept, but one that, in practice, is remarkably difficult to distinguish from the localized adsorption picture. If there can be even a small amount of surface heterogeneity the distinction becomes virtually impossible (see Section XVll-14). Even the cases of phase change are susceptible to explanation on either basis. [Pg.653]

Surface heterogeneity may merely be a reflection of different types of chemisorption and chemisorption sites, as in the examples of Figs. XVIII-9 and XVIII-10. The presence of various crystal planes, as in powders, leads to heterogeneous adsorption behavior the effect may vary with particle size, as in the case of O2 on Pd [107]. Heterogeneity may be deliberate many catalysts consist of combinations of active surfaces, such as bimetallic alloys. In this last case, the surface properties may be intermediate between those of the pure metals (but one component may be in surface excess as with any solution) or they may be distinctly different. In this last case, one speaks of various effects ensemble, dilution, ligand, and kinetic (see Ref. 108 for details). [Pg.700]

There has been a general updating of the material in all the chapters the treatment of films at the liquid-air and liquid-solid interfaces has been expanded, particularly in the area of contemporary techniques and that of macromolecular films. The scanning microscopies (tunneling and atomic force) now contribute more prominently. The topic of heterogeneous catalysis has been expanded to include the well-studied case of oxidation of carbon monoxide on metals, and there is now more emphasis on the flexible surface, that is, the restructuring of surfaces when adsorption occurs. New calculational methods are discussed. [Pg.802]

Surface heterogeneity is difficult to remove from crystalline inorganic substances, such as metal oxides, without causing large loss of surface areas by sintering. Thus in Fig. 2.14 in which the adsorbent was rutile (TiO ) all three adsorbates show a continuous diminution in the heat of adsorption as the surface coverage increases, but with an accelerated rate of fall as monolayer completion is approached. [Pg.59]

The way in which these factors operate to produce Type III isotherms is best appreciated by reference to actual examples. Perhaps the most straightforward case is given by organic high polymers (e.g. polytetra-fluoroethylene, polyethylene, polymethylmethacrylate or polyacrylonitrile) which give rise to well defined Type III isotherms with water or with alkanes, in consequence of the weak dispersion interactions (Fig. S.2). In some cases the isotherms have been measured at several temperatures so that (f could be calculated in Fig. 5.2(c) the value is initially somewhat below the molar enthalpy of condensation and rises to qi as adsorption proceeds. In Fig. 5.2(d) the higher initial values of q" are ascribed to surface heterogeneity. [Pg.249]

Many simple systems that could be expected to form ideal Hquid mixtures are reasonably predicted by extending pure-species adsorption equiUbrium data to a multicomponent equation. The potential theory has been extended to binary mixtures of several hydrocarbons on activated carbon by assuming an ideal mixture (99) and to hydrocarbons on activated carbon and carbon molecular sieves, and to O2 and N2 on 5A and lOX zeoHtes (100). Mixture isotherms predicted by lAST agree with experimental data for methane + ethane and for ethylene + CO2 on activated carbon, and for CO + O2 and for propane + propylene on siUca gel (36). A statistical thermodynamic model has been successfully appHed to equiUbrium isotherms of several nonpolar species on 5A zeoHte, to predict multicomponent sorption equiUbria from the Henry constants for the pure components (26). A set of equations that incorporate surface heterogeneity into the lAST model provides a means for predicting multicomponent equiUbria, but the agreement is only good up to 50% surface saturation (9). [Pg.285]

Both extreme models of surface heterogeneity presented above can be readily used in computer simulation studies. Application of the patch wise model is amazingly simple, if one recalls that adsorption on each patch occurs independently of adsorption on any other patch and that boundary effects are neglected in this model. For simplicity let us assume here the so-called two-dimensional model of adsorption, which is based on the assumption that the adsorbed layer forms an individual thermodynamic phase, being in thermal equilibrium with the bulk uniform gas. In such a case, adsorption on a uniform surface (a single patch) can be represented as... [Pg.251]

From the above argument and Eq. (16) we instantaneously find that the isosteric heat of adsorption cannot be constant within the two-phase region but must also show changes with the surface coverage. In the case of heat capacity we also observe important effects due to the surface heterogeneity. [Pg.264]

Another special case of weak heterogeneity is found in the systems with stepped surfaces [97,142-145], shown schematically in Fig. 3. Assuming that each terrace has the lattice structure of the exposed crystal plane, the potential field experienced by the adsorbate atom changes periodically across the terrace but exhibits nonuniformities close to the terrace edges [146,147]. Thus, we have here another example of geometrically induced energetical heterogeneity. Adsorption on stepped surfaces has been studied experimentally [95,97,148] as well as with the help of both Monte Carlo [92-94,98,99,149-152] and molecular dynamics [153,154] computer simulation methods. [Pg.268]

The Role of Surface Heterogeneity in Adsorption George D. Halsey... [Pg.423]

Analysis of the dynamics of SCR catalysts is also very important. It has been shown that surface heterogeneity must be considered to describe transient kinetics of NH3 adsorption-desorption and that the rate of NO conversion does not depend on the ammonia surface coverage above a critical value [79], There is probably a reservoir of adsorbed species which may migrate during the catalytic reaction to the active vanadium sites. It was also noted in these studies that ammonia desorption is a much slower process than ammonia adsorption, the rate of the latter being comparable to that of the surface reaction. In the S02 oxidation on the same catalysts, it was also noted in transient experiments [80] that the build up/depletion of sulphates at the catalyst surface is rate controlling in S02 oxidation. [Pg.13]

Classical IS measurements indicate that corrosion inhibitors reduce surface heterogeneity and function primarily by adsorption. Furthermore, the sorbed monolayer is either (I) permeable and insulating or (II) impermeable and conductive. Analysis of the time-constant, T, for the corrosion process, suggests that mechanism (I) is operative. [Pg.648]

When it occurs, the adsorption on reactive sites, located in shielded areas, may therefore occur after less reactive sites, better exposed, have reacted. Diffusion may thus cause the smoothing out of significant details in the energy spectrum and the Q-d curves, determined in the presence of diffusion phenomena, indicate less surface heterogeneity than actually exists on the adsorbent surface. [Pg.243]

Temkin s isotherm can describe the effects of surface heterogeneity or of surface modification on adsorption but we should also take into account the lateral interactions between adsorbed molecules. For the adsorption of simple... [Pg.16]

Adsorption and Precipitation vs heterogeneous Nucleation and Surface Precipitation. There is not only a continuum between surface complexation (adsorption) and precipitation, but there is also obiously a continuum from heterogeneous nucleation to surface precipitation. The two models are two limiting cases for the initiation of precipitation. In the heterogeneous nucleation model, the interface is fixed and no mixing of ions occurs across the interface. As a consequence precipi-... [Pg.230]


See other pages where Adsorption surface heterogeneity is mentioned: [Pg.590]    [Pg.625]    [Pg.653]    [Pg.655]    [Pg.660]    [Pg.660]    [Pg.698]    [Pg.701]    [Pg.250]    [Pg.251]    [Pg.259]    [Pg.259]    [Pg.273]    [Pg.160]    [Pg.387]    [Pg.246]    [Pg.106]    [Pg.242]    [Pg.635]    [Pg.90]    [Pg.197]    [Pg.482]    [Pg.49]    [Pg.56]    [Pg.186]    [Pg.41]    [Pg.51]   
See also in sourсe #XX -- [ Pg.77 , Pg.439 ]




SEARCH



Adsorption Entropy on Heterogeneous Surfaces with Surface Diffusion

Adsorption Rates on Partially Regenerated Surfaces Displaying Both Site and Induced Heterogeneity

Adsorption heterogeneous

Adsorption on heterogeneous surfaces

Heterogeneous surfaces

Heterogeneous surfaces adsorption

Heterogeneous surfaces adsorption

Heterogenous surface

Isotherms adsorption, heterogeneous surfaces

Physical Adsorption on Heterogeneous Surfaces

Physical adsorption surface heterogeneity

Surface heterogeneity

Surface heterogeneity Surfaces

Surface heterogeneity heterogeneous, adsorption

Surface heterogeneity heterogeneous, adsorption

Surfaces, heterogeneous, thermodynamics adsorption

The Role of Surface Heterogeneity in Adsorption George D. Halsey

The Role of Surface Heterogeneity in Multilayer Adsorption

Thermodynamic Parameters of Adsorption on Heterogeneous Surface

© 2024 chempedia.info