Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface different types

Many experimental techniques are used to study the adsorption ability of fillers and the adsorption of polymer chains at surfaces. Different types of information are provided by these methods. [Pg.781]

In general, the rate of adsorption of component 2 is affected by the presence of component 1 and so differs from that on a clean surface. Different types of kinetics are obtained depending on (i) whether the activation energy of adsorption of component 2 is increased or decreased by the presence of component 1, i.e., whether g-y of Eq. (68) is positive or negative (ii) whether component 1 is present on all patches 0 to m or only on the high-energy patches k to m-, and (iii) whether a surface complex is formed. [Pg.41]

Mechanical cleaning involves the physical application of a force to clean a surface. Different types of force can be used in combination to achieve the required results. Depending on the type of applied force (manual, motive, or vibratory), mechanical cleaning can be classified as manual, abrasive, or ultrasonic. Each of these is discussed below. [Pg.275]

With sliding doors or conveyor belts sliding on support surfaces different type of low friction or low drag application is encountered. The normal forces are generally small and the faction load problems are of the adhering type. Some plastics exhibit excellent surfaces for this type of application. PTFEs (tetrafluoroethylene) have the lowest coefficient of any solid material and represent one of the most slippery surfaces known. The major problem with PTFE is that its abrasion resistance is low so that most of the applications utilize filled compositions with ceramic filler materials to improve the abrasion resistance. [Pg.108]

The temperature in stirred tank reactors may be influenced by chemical or physical reactions within the tank. Cooling or heating devices might be required to control the process temperature. In many endothermic processes heat has to be added to raise and maintain the temperature of the bulk. In other exothermic processes heat is removed to avoid hot spots. Heating and cooling of the process fluid are accomplished by heat transfer between the process fluid and a heating or cooling media that is circulated within a closed heat transfer surface. Different types of heat transfer equipment are used in industrial processes such as jackets, external or internal helical coils, as sketched in Fig. 7.10. Heat transfer from the bulk of the tank to the heat transfer medium can be calculated by the standard heat transfer model ... [Pg.843]

If aU the polymer-producing sites on a catalyst surface had the same activity and were exposed to the same monomer concentration, and if chain transfer occurred randomly, we d expect the polymer to have a most-probable distribution of chain lengths, (10.47), with a polydispersity index of 2.0. Polymers produced with these heterogeneous catalysts typically have polydispersity indexes from 3 to 20, however. Two reasons have been advanced for these broad distributions (1) mass-transfer resistance, which causes the monomer concentration to vary with location and perhaps time in the particles, and (2) a range of site activities (k s) on the catalyst surface. Different types of sites have been identified on the surfaces. ... [Pg.194]

Flotation. Flotation is a gravity separation process which exploits differences in the surface properties of particles. Gas bubbles are generated in a liquid and become attached to solid particles or immiscible liquid droplets, causing the particles or droplets to rise to the surface. This is used to separate mixtures of solid-solid particles and liquid-liquid mixtures of finely divided immiscible droplets. It is an important technique in mineral processing, where it is used to separate different types of ore. [Pg.70]

The dependencies described are sufficient for designing the different types of ultrasonic transducers for testing by surface waves. The constant transmission of acoustic energy is provided. [Pg.881]

In the context of the structural perturbations at fluid-solid interfaces, it is interesting to investigate the viscosity of thin liquid films. Eaily work on thin-film viscosity by Deijaguin and co-workers used a blow off technique to cause a liquid film to thin. This work showed elevated viscosities for some materials [98] and thin film viscosities lower than the bulk for others [99, 100]. Some controversial issues were raised particularly regarding surface roughness and contact angles in the experiments [101-103]. Entirely different types of data on clays caused Low [104] to conclude that the viscosity of interlayer water in clays is greater than that of bulk water. [Pg.246]

Different types of chemisorption sites may be observed, each with a characteristic A value. Several adsorbed states appear to exist for CO chemisorbed on tungsten, as noted. These states of chemisorption probably have to do with different types of chemisorption bonding, maybe involving different types of surface sites. Much of the evidence has come initially from desorption studies, discussed immediately following. [Pg.694]

Surface heterogeneity may merely be a reflection of different types of chemisorption and chemisorption sites, as in the examples of Figs. XVIII-9 and XVIII-10. The presence of various crystal planes, as in powders, leads to heterogeneous adsorption behavior the effect may vary with particle size, as in the case of O2 on Pd [107]. Heterogeneity may be deliberate many catalysts consist of combinations of active surfaces, such as bimetallic alloys. In this last case, the surface properties may be intermediate between those of the pure metals (but one component may be in surface excess as with any solution) or they may be distinctly different. In this last case, one speaks of various effects ensemble, dilution, ligand, and kinetic (see Ref. 108 for details). [Pg.700]

A large number of ordered surface structures can be produced experimentally on single-crystal surfaces, especially with adsorbates [H]. There are also many disordered surfaces. Ordering is driven by the interactions between atoms, ions or molecules in the surface region. These forces can be of various types covalent, ionic, van der Waals, etc and there can be a mix of such types of interaction, not only within a given bond, but also from bond to bond in the same surface. A surface could, for instance, consist of a bulk material with one type of internal bonding (say, ionic). It may be covered with an overlayer of molecules with a different type of intramolecular bonding (typically covalent) and the molecules may be held to the substrate by yet another fomi of bond (e.g., van der Waals). [Pg.1758]

The balance between these different types of bonds has a strong bearing on the resulting ordering or disordering of the surface. For adsorbates, the relative strength of adsorbate-substrate and adsorbate-adsorbate interactions is particularly important. Wlien adsorbate-substrate interactions dominate, well ordered overlayer structures are induced that are arranged in a superlattice, i.e. a periodicity which is closely related to that of the substrate lattice one then speaks of commensurate overlayers. This results from the tendency for each adsorbate to seek out the same type of adsorption site on the surface, which means that all adsorbates attempt to bond in the same maimer to substrate atoms. [Pg.1758]

Stripping voltammetry involves the pre-concentration of the analyte species at the electrode surface prior to the voltannnetric scan. The pre-concentration step is carried out under fixed potential control for a predetennined time, where the species of interest is accumulated at the surface of the working electrode at a rate dependent on the applied potential. The detemiination step leads to a current peak, the height and area of which is proportional to the concentration of the accumulated species and hence to the concentration in the bulk solution. The stripping step can involve a variety of potential wavefomis, from linear-potential scan to differential pulse or square-wave scan. Different types of stripping voltaimnetries exist, all of which coimnonly use mercury electrodes (dropping mercury electrodes (DMEs) or mercury film electrodes) [7, 17]. [Pg.1932]

The problem of the theoretical description of biopolymer water adsorption isotherms has drawn the attention of researchers for a long time. In the works [19], [20] a rigorous statistical basis for equations describing the isotherms for the case of homogeneous adsorption surfaces and noninteracting adsorption sites of N different types has been suggested. The general equation is ... [Pg.120]

D information is available, e.g., in databases without experimental data, the different types of surfaces (sec below) can be calculated only after a 3D structure has been determined by a 3D structure generator, which might be followed by computational refinement, e.g., with a force-field calculation. [Pg.125]

Henry s law corresponds physically to the situation in which the adsorbed phase is so dilute that there is neither competition for surface sites nor any significant interaction between adsorbed molecules. At higher concentrations both of these effects become important and the form of the isotherm becomes more complex. The isotherms have been classified into five different types (9) (Eig. 4). Isotherms for a microporous adsorbent are generally of type I the more complex forms are associated with multilayer adsorption and capillary condensation. [Pg.255]

Fundamental models correctly predict that for Group A particles, the conductive heat transfer is much greater than the convective heat transfer. For Group B and D particles, the gas convective heat transfer predominates as the particle surface area decreases. Figure 11 demonstrates how heat transfer varies with pressure and velocity for the different types of particles (23). As superficial velocity increases, there is a sudden jump in the heat-transfer coefficient as gas velocity exceeds and the bed becomes fluidized. [Pg.77]

Miscellaneous Properties. The acoustical properties of polymers are altered considerably by their fabrication into a ceUular stmcture. Sound transmission is altered only slightly because it depends predominandy on the density of the barrier (in this case, the polymer phase). CeUular polymers by themselves are, therefore, very poor materials for reducing sound transmission. They are, however, quite effective in absorbing sound waves of certain frequencies (150) materials with open ceUs on the surface are particulady effective. The combination of other advantageous physical properties with fair acoustical properties has led to the use of several different types of plastic foams in sound-absorbing constmctions (215,216). The sound absorption of a number of ceUular polymers has been reported (21,150,215,217). [Pg.415]

The characteristics of a powder that determine its apparent density are rather complex, but some general statements with respect to powder variables and their effect on the density of the loose powder can be made. (/) The smaller the particles, the greater the specific surface area of the powder. This increases the friction between the particles and lowers the apparent density but enhances the rate of sintering. (2) Powders having very irregular-shaped particles are usually characterized by a lower apparent density than more regular or spherical ones. This is shown in Table 4 for three different types of copper powders having identical particle size distribution but different particle shape. These data illustrate the decisive influence of particle shape on apparent density. (J) In any mixture of coarse and fine powder particles, an optimum mixture results in maximum apparent density. This optimum mixture is reached when the fine particles fill the voids between the coarse particles. [Pg.181]


See other pages where Surface different types is mentioned: [Pg.46]    [Pg.205]    [Pg.293]    [Pg.49]    [Pg.715]    [Pg.46]    [Pg.419]    [Pg.469]    [Pg.37]    [Pg.443]    [Pg.255]    [Pg.202]    [Pg.46]    [Pg.205]    [Pg.293]    [Pg.49]    [Pg.715]    [Pg.46]    [Pg.419]    [Pg.469]    [Pg.37]    [Pg.443]    [Pg.255]    [Pg.202]    [Pg.412]    [Pg.342]    [Pg.309]    [Pg.1283]    [Pg.1870]    [Pg.1944]    [Pg.2730]    [Pg.24]    [Pg.27]    [Pg.457]    [Pg.166]    [Pg.642]    [Pg.209]    [Pg.241]    [Pg.484]    [Pg.333]    [Pg.124]    [Pg.106]    [Pg.55]   
See also in sourсe #XX -- [ Pg.499 ]




SEARCH



Surface types

© 2024 chempedia.info