Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface contact properties

Many polymer items are designed specifically to make contact with other materials. Where surface contact is concerned, two key properties are coefficient of friction and abrasion resistance. Polymers used in such applications include ultra high molecular weight polyethylene, polyacctal, fluorinated polymers, and natural and synthetic rubbers. Examples that we routinely come across include furniture upholstery, bushings and gears in office equipment, and bicycle tires. Industrial uses include the outer cover of electrical cables, and pipes that convey abrasive liquids such as slurries and powders. [Pg.18]


Game-Related Properties. Eot some activities, such as miming and wrestdng, the only consideration is the direct impact by the player. Eot others, eg, tennis, baseball, or soccer, the system must also provide acceptable bad-to-surface contact properties. Important bad-response properties on the artificial surface ate coefficients of restitution and friction, because these direedy determine the angle, speed, and spin of the bad. [Pg.532]

We can divide the surface contact properties of polymers into two categories those in which the surface remains intact when it comes into contact with another surface and the polymer surface s resistance to damage. Friction and cling fall into the first category. Surface damage can be caused by erosion, abrasion, or cavitation. [Pg.174]

The surface contact properties of polyethylene are those arising from its contact with materials with which it is in relative motion. The two principal consequences of contact are wear and friction. Wear is the phenomenon whereby the surface... [Pg.193]

The growth of solid films onto solid substrates allows for the production of artificial stmctures that can be used for many purposes. For example, film growth is used to create pn junctions and metal-semiconductor contacts during semiconductor manufacture, and to produce catalytic surfaces with properties that are not found in any single material. Lubrication can be applied to solid surfaces by the appropriate growth of a solid lubricating film. Film growth is also... [Pg.301]

Measurement of Surface Activity. Each surface-active property can be measured in a variety of ways and the method of choice depends on the characteristics of the substance to be tested. The most frequendy determined properties are surface tension (Y5q, Ylg) i t if cial tension (Yll> Tlg) contact angle (9), and CMC. [Pg.237]

Mixed liberated particles can be separated from each other by flotation if there are sufficient differences in their wettability. The flotation process operates by preparing a water suspension of a mixture of relatively fine-sized particles (smaller than 150 micrometers) and by contacting the suspension with a swarm of air bubbles of air in a suitably designed process vessel. Particles that are readily wetted by water (hydrcmhiric) tend to remain in suspension, and those particles not wetted by water (hydrophobic) tend to be attached to air bubbles, levitate (float) to the top of the process vessel, and collect in a froth layer. Thus, differences in the surface chemical properties of the solids are the basis for separation by flotation. [Pg.1808]

Perhaps the most significant complication in the interpretation of nanoscale adhesion and mechanical properties measurements is the fact that the contact sizes are below the optical limit ( 1 t,im). Macroscopic adhesion studies and mechanical property measurements often rely on optical observations of the contact, and many of the contact mechanics models are formulated around direct measurement of the contact area or radius as a function of experimentally controlled parameters, such as load or displacement. In studies of colloids, scanning electron microscopy (SEM) has been used to view particle/surface contact sizes from the side to measure contact radius [3]. However, such a configuration is not easily employed in AFM and nanoindentation studies, and undesirable surface interactions from charging or contamination may arise. For adhesion studies (e.g. Johnson-Kendall-Roberts (JKR) [4] and probe-tack tests [5,6]), the probe/sample contact area is monitored as a function of load or displacement. This allows evaluation of load/area or even stress/strain response [7] as well as comparison to and development of contact mechanics theories. Area measurements are also important in traditional indentation experiments, where hardness is determined by measuring the residual contact area of the deformation optically [8J. For micro- and nanoscale studies, the dimensions of both the contact and residual deformation (if any) are below the optical limit. [Pg.194]

Hybrid organosilicon-organophosphazene polymers have also been synthesized (15-18) (structure ) (the organosilicon groups were introduced via the chemistry shown in Scheme 11). These are elastomers with surface contact angles in the region of 106°. Although no biocompatibility tests have been conducted on these polymers, the molecular structure and material properties would be expected to be similar to or an improvement over those of polysiloxane (silicone) polymers. [Pg.167]

It is through the solid state characteristics of polymers that we - as users - primarily interact with them. For convenience, we can divide the principal properties of polymers into five categories mechanical, optical, surface contact, barrier, and electrical. Weather resistance is a sixth category that can influence each of the other five categories. In order to understand these properties we must be able to quantify them. In this chapter we shall concentrate on measurement techniques, since it is through these methods that we learn how a polymer will behave during use. [Pg.155]

For all three types of dendrimers described above, a flattened, disk-like conformation was observed for the higher generations. However, the molecular shape at the air-water interface is also intimately associated with the polarity, and hence the type of dendrimer used. In case of the polypropylene imine) and PAMAM dendrimers the hydrophilic cores interact with the sub-phase and hence these dendrimers assume an oblate shape for all generations. The poly(benzyl ether) dendrimers, on the other hand, are hydrophobic and want to minimize contact with the water surface. This property results in a conformational shape change from ellipsoidal, for the lower generations, to oblate for the higher generations [46]. [Pg.391]


See other pages where Surface contact properties is mentioned: [Pg.36]    [Pg.155]    [Pg.174]    [Pg.175]    [Pg.177]    [Pg.18]    [Pg.137]    [Pg.156]    [Pg.157]    [Pg.159]    [Pg.193]    [Pg.36]    [Pg.155]    [Pg.174]    [Pg.175]    [Pg.177]    [Pg.18]    [Pg.137]    [Pg.156]    [Pg.157]    [Pg.159]    [Pg.193]    [Pg.440]    [Pg.367]    [Pg.9]    [Pg.143]    [Pg.351]    [Pg.506]    [Pg.455]    [Pg.761]    [Pg.94]    [Pg.359]    [Pg.621]    [Pg.147]    [Pg.33]    [Pg.187]    [Pg.576]    [Pg.399]    [Pg.71]    [Pg.72]    [Pg.281]    [Pg.15]    [Pg.161]    [Pg.493]   
See also in sourсe #XX -- [ Pg.18 , Pg.156 ]

See also in sourсe #XX -- [ Pg.18 , Pg.156 ]




SEARCH



Surface contact

© 2024 chempedia.info