Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface confined liquids

The earliest SFA experiments consisted of bringing the two mica sheets into contact m a controlled atmosphere (figure Bl.20.61 or (confined) liquid medium [14, 27, 73, 74 and 75]. Later, a variety of surfactant layers [76, 77], polymer surfaces [5, 9, fO, L3, 78], poly electrolytes [79], novel materials [ ] or... [Pg.1738]

The surface force apparatus (SFA) is a device that detects the variations of normal and tangential forces resulting from the molecule interactions, as a function of normal distance between two curved surfaces in relative motion. SFA has been successfully used over the past years for investigating various surface phenomena, such as adhesion, rheology of confined liquid and polymers, colloid stability, and boundary friction. The first SFA was invented in 1969 by Tabor and Winterton [23] and was further developed in 1972 by Israela-chivili and Tabor [24]. The device was employed for direct measurement of the van der Waals forces in the air or vacuum between molecularly smooth mica surfaces in the distance range of 1.5-130 nm. The results confirmed the prediction of the Lifshitz theory on van der Waals interactions down to the separations as small as 1.5 nm. [Pg.14]

Surface force apparatus has been applied successfully over the past years for measuring normal surface forces as a function of surface gap or film thickness. The results reveal, for example, that the normal forces acting on confined liquid composed of linear-chain molecules exhibit a periodic oscillation between the attractive and repulsive interactions as one surface continuously approaches to another, which is schematically shown in Fig. 19. The period of the oscillation corresponds precisely to the thickness of a molecular chain, and the oscillation amplitude increases exponentially as the film thickness decreases. This oscillatory solvation force originates from the formation of the layering structure in thin liquid films and the change of the ordered structure with the film thickness. The result provides a convincing example that the SFA can be an effective experimental tool to detect fundamental interactions between the surfaces when the gap decreases to nanometre scale. [Pg.17]

Another remarkable feature of thin film rheology to be discussed here is the quantized" property of molecularly thin films. It has been reported [8,24] that measured normal forces between two mica surfaces across molecularly thin films exhibit oscillations between attraction and repulsion with an amplitude in exponential growth and a periodicity approximately equal to the dimension of the confined molecules. Thus, the normal force is quantized, depending on the thickness of the confined films. The quantized property in normal force results from an ordering structure of the confined liquid, known as the layering, that molecules are packed in thin films layer by layer, as revealed by computer simulations (see Fig. 12 in Section 3.4). The quantized property appears also in friction measurements. Friction forces between smooth mica surfaces separated by three layers of the liquid octamethylcyclotetrasiloxane (OMCTS), for example, were measured as a function of time [24]. Results show that friction increased to higher values in a quantized way when the number of layers falls from n = 3 to n = 2 and then to M = 1. [Pg.84]

Finally, a relatively new area in the computer simulation of confined polymers is the simulation of nonequilibrium phenomena [72,79-87]. An example is the behavior of fluids undergoing shear flow, which is studied by moving the confining surfaces parallel to each other. There have been some controversies regarding the use of thermostats and other technical issues in the simulations. If only the walls are maintained at a constant temperature and the fluid is allowed to heat up under shear [79-82], the results from these simulations can be analyzed using continuum mechanics, and excellent results can be obtained for the transport properties from molecular simulations of confined liquids. This avenue of research is interesting and could prove to be important in the future. [Pg.109]

Recently the wall-PRISM theory has been used to investigate the forces between hydrophobic surfaces immersed in polyelectrolyte solutions [98], Polyelectrolyte solutions display strong peaks at low wavevectors in the static structure factor, which is a manifestation of liquid-like order on long lengths-cales. Consequently, the force between surfaces confining polyelectrolyte solutions is an oscillatory function of their separation. The wall-PRISM theory predicts oscillatory forces in salt-free solutions with a period of oscillation that scales with concentration as p 1/3 and p 1/2 in dilute and semidilute solutions, respectively. This behavior is explained in terms of liquid-like ordering in the bulk solution which results in liquid-like layering when the solution is confined between surfaces. In the presence of added salt the theory predicts the possibility of a predominantly attractive force under some conditions. These predictions are in accord with available experiments [99,100]. [Pg.115]

Surface-confined ionic liquids as stationary phases in liquid... [Pg.167]

Surface-confined ionic liquid stationary phases in... [Pg.167]

The analysis of ILs may afford considerable insight into the physicochemical properties underlying the rich potential interaction chemistries of ILs [14] and suggest possibilities for future applications. Simultaneously, the unique features of ILs provide some intriguing new possibilities in the area of separations that have yet to be realized. Hence, topics to be covered in this chapter include analysis of ILs by LC, applications of ILs in liquid-phase microextraction (LPME), in high-performance LC (HPLC) as mobile-phase additives, and in capillary electrophoresis (CE) as buffer additives as well as applications of surface-confined ILs (SCIL) as novel stationary phases for LC. [Pg.168]

Liu, S.-J, Zhou, R, Xiao, X.-H., Zhao, L., Liu, X., and Jiang, S.-X., Surface confined ionic liquid—A new stationary phase for the separation of ephedrines in high performance liquid chromatography. Chin. Chem. Lett., 15, 1060-1062, 2004. [Pg.181]

When two such surfaces approach each other, layer after layer is squeezed out of the closing gap (Fig. 6.12). Density fluctuations and the specific interactions then cause an exponentially decaying periodic force the periodic length corresponds to the thickness of each layer. Such forces were termed solvation forces because they are a consequence of the adsorption of solvent molecules to solid surfaces [168], Periodic solvation forces across confined liquids were first predicted by computer simulations and theory [168-171], In this case, however, the experimental proof came only few years afterwards using the surface forces apparatus [172,173]. Solvation forces are not only an important factor in the stability of dispersions. They are also important for analyzing the structure of confined liquids. [Pg.105]

At separations of a few molecular diameters, the solvation force due to the specific structure of the confined liquid, can be substantial. Polymers at surfaces can be used to stabilize disperions by steric interaction. [Pg.116]

As we have seen in Section 6.6.1 such confined liquids may behave quite differently from the bulk lubricant. Near the surfaces, the formation of layered structures can lead to an oscillatory density profile (see Fig. 6.12). When these layered structures start to overlap, the confined liquid may undergo a phase transition to a crystalline or glassy state, as observed in surface force apparatus experiments [471,497-500], This is correlated with a strong increase in viscosity. Shearing of such solidified films, may lead to stick-slip motions. When a critical shear strength is exceeded, the film liquefies. The system relaxes by relative movement of the surfaces and the lubricant solidifies again. [Pg.240]

The surface force apparatus (SFA) has been used extensively over the past 30 years to measure the force directly as a function of separation between surfaces in liquids and vapors. If the force-measuring spring is replaced with a mechanically more rigid support, the two opposing surfaces become an ideal model pore for the study of confinement effects on phase behavior [16], A detailed review can be found in reference ]. Briefly, the shift of the melting temperature AT can be related to the size h of the condensate measured with SFA according to... [Pg.241]

Wang, Q., Baker, G.A., Baker, S.N., and Colon, L.A. 2006. Surface confined ionic liquid as a stationary phase for HPLC. Analyst, 131 1000-5. [Pg.302]

N. S. Lew is, A. B. Bocarsly, and M. S. Wrighton, Heterogeneous electron transfer at designed semi-conductor/liquid interfaces. Rate of reduction of surface-confined ferricenium centers by solution... [Pg.480]


See other pages where Surface confined liquids is mentioned: [Pg.14]    [Pg.14]    [Pg.2746]    [Pg.51]    [Pg.62]    [Pg.93]    [Pg.327]    [Pg.385]    [Pg.407]    [Pg.296]    [Pg.24]    [Pg.82]    [Pg.93]    [Pg.94]    [Pg.181]    [Pg.398]    [Pg.447]    [Pg.207]    [Pg.365]    [Pg.128]    [Pg.415]    [Pg.416]    [Pg.639]    [Pg.82]    [Pg.562]    [Pg.1839]    [Pg.3075]   
See also in sourсe #XX -- [ Pg.174 ]




SEARCH



Liquid surface

Liquid, confinement

Liquidous surface

Surface confinement

© 2024 chempedia.info