Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface chemistry compounds

As described in the chapter on band structures, these calculations reproduce the electronic structure of inhnite solids. This is important for a number of types of studies, such as modeling compounds for use in solar cells, in which it is important to know whether the band gap is a direct or indirect gap. Band structure calculations are ideal for modeling an inhnite regular crystal, but not for modeling surface chemistry or defect sites. [Pg.319]

Bewick, A., and M. Fleischmann, Formation of surface compounds on electrodes, in Topics in Surface Chemistry (Eds E. Kay and P. S. Bagres), p. 45, Plenum Press, New York, 1978. [Pg.395]

Jarvis, N.L. and Zisman, W.A. "Surface Activity of Fluorinated Organic Compounds at Organic-Liquid/Air Interfaces Part II. Surface Tension vs Concentration Curves, Adsorption Isotherms, and Force-Area Isotherms for Partially Fluorinated Carboxylic Esters," Naval Research Labs Report 5364, Surface Chemistry Branch, Chemistry Division, October 8, 1959. [Pg.675]

In the first chapter, on electrochemical atomic layer epitaxy, Stickney provides a review of experimental methodology and current accomplishments in the electrodeposition of compound semiconductors. The experimental procedures and detailed fundamental background associated with layer-by-layer assembly are summarized for various compounds. The surface chemistry associated with the electrochemical reactions that are used to form the layers is discussed, along with challenges and issues associated with device formation by this method. [Pg.356]

Sorption processes are influenced not just by the natures of the absorbate ion(s) and the mineral surface, but also by the solution pH and the concentrations of the various components in the solution. Even apparently simple absorption reactions may involve a series of chemical equilibria, especially in natural systems. Thus in only a comparatively small number of cases has an understanding been achieved of either the precise chemical form(s) of the adsorbed species or of the exact nature of the adsorption sites. The difficulties of such characterization arise from (i) the number of sites for adsorption on the mineral surface that are present because of the isomorphous substitutions and structural defects that commonly occur in aluminosilicate minerals, and (ii) the difference in the chemistry of solutions in contact with a solid surface as compound to bulk solution. Much of our present understanding is derived from experiments using spectroscopic techniques which are able to produce information at the molecular level. Although individual methods may often be applicable to only special situations, significant advances in our knowledge have been made... [Pg.357]

In order to increase the electroosmotic flow, a number of studies used beads with specifically designed surface chemistries that involved strong ion-exchange functionalities. The famous yet irreproducible separations of basic compounds with an efficiency of several millions of plates has been achieved with silica based... [Pg.17]

Progress on understanding the surface chemistry relevant to the formation of compound semiconductors is being made. One major issue is the genesis of defects that appear in deposits formed with the flow deposi-fion sysfem. Probable defecf sources include fhe subsfrafe qualify, lattice mismatch problem, and problems associated with deposition of a compound... [Pg.178]

Au is an excellent electrode material. It is inert in most electrochemical environments, and its surface chemistry is moderately well understood. It is not, however, the substrate of choice for the epitaxial formation of most compounds. One major problem with Au is that it is not well lattice matched with the compounds being deposited. There are cases where fortuitous lattice matches are found, such as with CdSe on Au(lll), where the Vs times the lattice constant of CdSe match up with three times the Au (Fig. 63B) [115,125]. However, there is still a 0.6% mismatch. A second problem has to do with formation of a compound on an elemental substrate (Fig. 65) [384-387]. Two types of problems are depicted in Fig. 65. In Fig. 65A the first element incompletely covers the surface, so that when an atomic layer of the second element is deposited, antiphase boundaries result on the surface between the domains. These boundaries may then propagate as the deposit grows. In Fig. 65b the presence of an atomically high step in the substrate is seen to also promote the formation of antiphase boundaries. The first atomic layer is seen to be complete in this case, but when an atomic layer of the second element is deposited on top, a boundary forms at the step edge. Both of the scenarios in Fig. 65 are avoided by use of a compound substrate. [Pg.180]

The problem with all three of the above scenarios is that they require an understanding of the surface chemistry of compound semiconductor in aqueous solutions. Much more is known about the surface chemistry and reactivity of Au in aqueous solutions. A prerequisite, then, to the use of a compound semiconductor as a substrate for compound electrodeposition is to gain a better understanding of the substrate s reactivity under electro-chemically relevant conditions. Our initial studies of compound reactivity in electrochemical environments involved CdTe single crystals [391]. The electrochemistry of CdTe is reasonably well understood from electrodeposition studies (Table 1), and single crystals are commercially available. [Pg.182]

Allcock, H. R., Fitzpatrick, R. J. and Salvati, L. 1991. Sulfonation of (aryloxy) phosphazenes and (arlyamino)phosphazenes small-molecule compounds, polymers and surfaces. Chemistry of Materials 3 1120-1132. [Pg.181]

The chemistry of an important group of naturally occurring materials is characterized by surface reactions many clay minerals possess what can be considered surface at its extreme. All clay minerals capable of intracrystalline swelling with separation of the silicate layers are—to overstate it—surface with a silicate layer on each side. Many principles and techniques of surface chemistry were first found with clay minerals. Nevertheless, the clay minerals will not be considered in this article, except for some comparison and analogies with surface compounds. [Pg.181]

Beyond any doubt, the electrode/electrolyte interfaces constitute the foundations for the state-of-the-art lithium ion chemistry and naturally have become the most active research topic during the past decade. However, the characterization of the key attributes of the corresponding surface chemistries proved rather difficult, and significant controversy has been generated. The elusive nature of these interfaces is believed to arise from the sensitivity of the major chemical compounds that originated from the decomposition of electrolyte components. [Pg.112]

To realize surface-bonded initiating sites or their precursors, a variety of methods are applicable. Either organic (polymer) surfaces are irradiated or plasma treated to yield suitable functional groups [187, 195] or inorganic supports are covered with an interlayer of functional polymers bearing the desired groups. However, to gain control over the quantity of surface reaction sites and define the surface chemistry, interlayers of low molar mass a,co-functionalized surface active compounds are suit-... [Pg.401]

Seong (2002) compared silylated (aldehyde) and silanated (amine and epoxy) compounds from several commercial sources to the performance of an antigen (IgG) microarray. In addition, the efficiency of phosphate-buffered saline (PBS) (pH 7.4) and carbonate (pH 9.6) printing buffers were compared. While the various slides and surface chemistries showed differences in their binding isotherms, they ultimately reached similar levels of saturation. Silylated (aldehyde) slides showed comparable loading in both buffer systems. Apparently, tethering of antibody to the surface by Schiff s base formation of the surface aldehyde and lysine residues on the protein was applicable over a broad pH. However, carbonate buffer increased binding of proteins on silanated surfaces. [Pg.67]

Figure 1.4 gives an example of the adsorption of a compound to suspended sediment, modeled as two resistances in series. At first, the compound is dissolved in water. For successful adsorption, the compound must be transported to the sorption sites on the surface of the sediment. The inverse of this transport rate can also be considered as a resistance to transport, Ri. Then, the compound, upon reaching the surface of the suspended sediment, must find a sorption site. This second rate parameter is more related to surface chemistry than to diffusive transport and is considered a second resistance, R2, that acts in series to the first resistance. The second resistance cannot... [Pg.6]


See other pages where Surface chemistry compounds is mentioned: [Pg.739]    [Pg.298]    [Pg.380]    [Pg.126]    [Pg.230]    [Pg.273]    [Pg.227]    [Pg.230]    [Pg.2]    [Pg.126]    [Pg.3]    [Pg.34]    [Pg.61]    [Pg.61]    [Pg.92]    [Pg.249]    [Pg.88]    [Pg.107]    [Pg.158]    [Pg.134]    [Pg.409]    [Pg.180]    [Pg.4]    [Pg.98]    [Pg.100]    [Pg.106]    [Pg.371]    [Pg.406]    [Pg.202]    [Pg.382]    [Pg.719]    [Pg.49]    [Pg.222]   
See also in sourсe #XX -- [ Pg.296 , Pg.297 , Pg.298 , Pg.299 , Pg.300 , Pg.301 , Pg.302 , Pg.303 , Pg.304 , Pg.305 , Pg.306 , Pg.307 , Pg.308 , Pg.309 , Pg.310 , Pg.311 ]




SEARCH



Compound chemistry

Surface chemistry

Surface compound

© 2024 chempedia.info