Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface area importance

As shown in Fig. 9-26, a developmental drug candidate, DFP, was chosen to study this technology. This compound has low solubility in water, making particle size and surface area important factors in determining its bioavailability. [Pg.204]

Catalytic gas-phase reactions play an important role in many bulk chemical processes, such as in the production of methanol, ammonia, sulfuric acid, and nitric acid. In most processes, the effective area of the catalyst is critically important. Since these reactions take place at surfaces through processes of adsorption and desorption, any alteration of surface area naturally causes a change in the rate of reaction. Industrial catalysts are usually supported on porous materials, since this results in a much larger active area per unit of reactor volume. [Pg.47]

Because the characteristic of tubular reactors approximates plug-flow, they are used if careful control of residence time is important, as in the case where there are multiple reactions in series. High surface area to volume ratios are possible, which is an advantage if high rates of heat transfer are required. It is sometimes possible to approach isothermal conditions or a predetermined temperature profile by careful design of the heat transfer arrangements. [Pg.54]

The air is streaming through the supply pipes directly into the blade which is mounted on a turntable. The blade is measured in different positions, so that all important surface areas can be examined. The time for a complete blade examination is approximatly 5 minutes. The blades or vanes are mounted manuell, otherwise the process is running fully automatically. [Pg.402]

A general prerequisite for the existence of a stable interface between two phases is that the free energy of formation of the interface be positive were it negative or zero, fluctuations would lead to complete dispersion of one phase in another. As implied, thermodynamics constitutes an important discipline within the general subject. It is one in which surface area joins the usual extensive quantities of mass and volume and in which surface tension and surface composition join the usual intensive quantities of pressure, temperature, and bulk composition. The thermodynamic functions of free energy, enthalpy and entropy can be defined for an interface as well as for a bulk portion of matter. Chapters II and ni are based on a rich history of thermodynamic studies of the liquid interface. The phase behavior of liquid films enters in Chapter IV, and the electrical potential and charge are added as thermodynamic variables in Chapter V. [Pg.1]

It might be noted that only for particles smaller than about 1 /ig or of surface area greater than a few square meters per gram does the surface energy become significant. Only for very small particles does the edge energy become important, at least with the assumption of perfect cubes. [Pg.271]

While a thermodynamic treatment can be developed entirely in terms of f(P,T), to apply adsorption models, it is highly desirable to know on a per square centimeter basis rather than a per gram basis or, alternatively, to know B, the fraction of surface covered. In both the physical chemistry and the applied chemistry of the solid-gas interface, the specific surface area is thus of extreme importance. [Pg.571]

It will be seen that each method for surface area determination involves the measurement of some property that is observed qualitatively to depend on the extent of surface development and that can be related by means of theory to the actual surface area. It is important to realize that the results obtained by different methods differ, and that one should in general expect them to differ. The problem is that the concept of surface area turns out to be a rather elusive one as soon as it is examined in detail. [Pg.572]

A rather different method from the preceding is that based on the rate of dissolving of a soluble material. At any given temperature, one expects the initial dissolving rate to be proportional to the surface area, and an experimental verification of this expectation has been made in the case of rock salt (see Refs. 26,27). Here, both forward and reverse rates are important, and the rate expressions are... [Pg.577]

We have considered briefly the important macroscopic description of a solid adsorbent, namely, its speciflc surface area, its possible fractal nature, and if porous, its pore size distribution. In addition, it is important to know as much as possible about the microscopic structure of the surface, and contemporary surface spectroscopic and diffraction techniques, discussed in Chapter VIII, provide a good deal of such information (see also Refs. 55 and 56 for short general reviews, and the monograph by Somoijai [57]). Scanning tunneling microscopy (STM) and atomic force microscopy (AFT) are now widely used to obtain the structure of surfaces and of adsorbed layers on a molecular scale (see Chapter VIII, Section XVIII-2B, and Ref. 58). On a less informative and more statistical basis are site energy distributions (Section XVII-14) there is also the somewhat laige-scale type of structure due to surface imperfections and dislocations (Section VII-4D and Fig. XVIII-14). [Pg.581]

Here the ijk coordinate system represents the laboratory reference frame the primed coordinate system i j k corresponds to coordinates in the molecular system. The quantities Tj, are the matrices describing the coordinate transfomiation between the molecular and laboratory systems. In this relationship, we have neglected local-field effects and expressed the in a fomi equivalent to simnning the molecular response over all the molecules in a unit surface area (with surface density N. (For simplicity, we have omitted any contribution to not attributable to the dipolar response of the molecules. In many cases, however, it is important to measure and account for the background nonlinear response not arising from the dipolar contributions from the molecules of interest.) In equation B 1.5.44, we allow for a distribution of molecular orientations and have denoted by () the corresponding ensemble average ... [Pg.1290]

The MEP at the molecular surface has been used for many QSAR and QSPR applications. Quantum mechanically calculated MEPs are more detailed and accurate at the important areas of the surface than those derived from net atomic charges and are therefore usually preferable [Ij. However, any of the techniques based on MEPs calculated from net atomic charges can be used for full quantum mechanical calculations, and vice versa. The best-known descriptors based on the statistics of the MEP at the molecular surface are those introduced by Murray and Politzer [44]. These were originally formulated for DFT calculations using an isodensity surface. They have also been used very extensively with semi-empirical MO techniques and solvent-accessible surfaces [1, 2]. The charged polar surface area (CPSA) descriptors proposed by Stanton and Jurs [45] are also based on charges derived from semi-empirical MO calculations. [Pg.393]

An interesting example of a large specific surface which is wholly external in nature is provided by a dispersed aerosol composed of fine particles free of cracks and fissures. As soon as the aerosol settles out, of course, its particles come into contact with one another and form aggregates but if the particles are spherical, more particularly if the material is hard, the particle-to-particle contacts will be very small in area the interparticulate junctions will then be so weak that many of them will become broken apart during mechanical handling, or be prized open by the film of adsorbate during an adsorption experiment. In favourable cases the flocculated specimen may have so open a structure that it behaves, as far as its adsorptive properties are concerned, as a completely non-porous material. Solids of this kind are of importance because of their relevance to standard adsorption isotherms (cf. Section 2.12) which play a fundamental role in procedures for the evaluation of specific surface area and pore size distribution by adsorption methods. [Pg.24]

Water is another adsorptive which has often been used, but its complexity of behaviour renders it generally unsuitable for the evaluation of total surface area. Consideration of this important topic is deferred to Chapter 5. [Pg.73]

A vast amount of research has been undertaken on adsorption phenomena and the nature of solid surfaces over the fifteen years since the first edition was published, but for the most part this work has resulted in the refinement of existing theoretical principles and experimental procedures rather than in the formulation of entirely new concepts. In spite of the acknowledged weakness of its theoretical foundations, the Brunauer-Emmett-Teller (BET) method still remains the most widely used procedure for the determination of surface area similarly, methods based on the Kelvin equation are still generally applied for the computation of mesopore size distribution from gas adsorption data. However, the more recent studies, especially those carried out on well defined surfaces, have led to a clearer understanding of the scope and limitations of these methods furthermore, the growing awareness of the importance of molecular sieve carbons and zeolites has generated considerable interest in the properties of microporous solids and the mechanism of micropore filling. [Pg.290]

It is less well known, but certainly no less important, that even with carbon dioxide as a drying agent, the supercritical drying conditions can also affect the properties of a product. Eor example, in the preparation of titania aerogels, temperature, pressure, the use of either Hquid or supercritical CO2, and the drying duration have all been shown to affect the surface area, pore volume, and pore size distributions of both the as-dried and calcined materials (34,35). The specific effect of using either Hquid or supercritical CO2 is shown in Eigure 3 as an iHustration (36). [Pg.3]

Surface Area. Surface area is the available area of fillers, be it on the surface or in cracks, crevices, and pores. The values obtained from different methods for measuring the surface area of a filler may vary significandy. These variations are because of the nature of the methods and in many instances yield information related to the heterogeneity of the surface. Understanding the surface area is important because many processing factors are dependent on the surface area, eg, ease of filler dispersion, rheology, and optimum filler loading. [Pg.367]

M ass Transfer. Mass transfer in a fluidized bed can occur in several ways. Bed-to-surface mass transfer is important in plating appHcations. Transfer from the soHd surface to the gas phase is important in drying, sublimation, and desorption processes. Mass transfer can be the limiting step in a chemical reaction system. In most instances, gas from bubbles, gas voids, or the conveying gas reacts with a soHd reactant or catalyst. In catalytic systems, the surface area of a catalyst can be enormous. Eor Group A particles, surface areas of 5 to over 1000 m /g are possible. [Pg.76]


See other pages where Surface area importance is mentioned: [Pg.317]    [Pg.196]    [Pg.385]    [Pg.634]    [Pg.634]    [Pg.317]    [Pg.196]    [Pg.385]    [Pg.634]    [Pg.634]    [Pg.204]    [Pg.257]    [Pg.580]    [Pg.584]    [Pg.634]    [Pg.729]    [Pg.327]    [Pg.1870]    [Pg.1874]    [Pg.1875]    [Pg.2760]    [Pg.26]    [Pg.559]    [Pg.348]    [Pg.351]    [Pg.38]    [Pg.104]    [Pg.230]    [Pg.212]    [Pg.3]    [Pg.3]    [Pg.5]    [Pg.9]    [Pg.265]    [Pg.271]    [Pg.334]   
See also in sourсe #XX -- [ Pg.5 , Pg.7 , Pg.8 ]

See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Surface area, important paramete

Surface importance

© 2024 chempedia.info