Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supported cross-linked polystyrene

High-performance size exclusion chromatography is used for the characterization of copolymers, as well as for biopolymers (3). The packings for analyses of water-soluble polymers mainly consist of 5- to 10-/Am particles derived from deactivated silica or hydrophilic polymeric supports. For the investigation of organosoluble polymers, cross-linked polystyrene beads are still the column packing of choice. [Pg.219]

An intramolecular palladium(o)-catalyzed cross-coupling of an aryl iodide with a trans vinylstannane is the penultimate maneuver in the Stille-Hegedus total synthesis of (S)-zearalenone (142) (see Scheme 38).59 In the event, exposure of compound 140 to Pd(PPh3)4 catalyst on a 20% cross-linked polystyrene support in refluxing toluene brings about the desired macrocyclization, affording the 14-membered macrolide 141 in 54% yield. Acid-induced hydrolysis of the two methoxyethoxymethyl (MEM) ethers completes the total synthesis of 142. [Pg.598]

More recently 233) it has been reported that cross-linked polystyrene containing imidazole ligands did not provide a support rigid enough to prevent dimerization, and that the p-oxo dimer was benzene extracted from oxygenated tetraphenyl porphyrin iron(ll), Fe(TPP), which had been attached to the modified polystyrene. A discussion of model synthetic porphyrins, from which definitive structural and other physical data are obtained, is given in section V.C. [Pg.30]

Devaky and Rajasree have reported the production of a polymer-bound ethylenediamine-borane reagent (63) (Fig. 41) for use as a reducing agent for the reduction of aldehydes.87 The polymeric reagent was derived from a Merrifield resin and a 1,6-hexanediol diacrylate-cross-linked polystyrene resin (HDODA-PS). The borane reagent was incorporated in the polymer support by complexation with sodium borohydride. When this reducing agent was used in the competitive reduction of a 1 1 molar mixture of benzaldehyde and acetophenone, benzaldehyde was found to be selectively reduced to benzyl alcohol. [Pg.47]

Numerous resin supports are commercially available for solid-phase synthesis and some allow the acquisition of quite reasonable quality spectra of compounds bonded to them - and some don t. The resins to avoid (if you intend trying to monitor your reactions by MAS-NMR) are any that are based purely on cross-linked polystyrene. These are too rigid and afford little or no mobility to any bound compound. These resins are relatively cheap and have high specific loadings but will give very poor spectra even in a MAS probe. We see little point in running spectra of compounds on these resins as the quality of the spectra make them virtually useless - and perhaps worse - potentially misleading. [Pg.146]

Use of benzene suspensions containing a neutral rhodium(I)-DIOP complex supported on a cross-linked polystyrene (50) (cf. 13 in Section III,A) for hydrogenation of a-ethylstyrene (to 1.5% ee) and methyl atro-pate (2.5% ee) was less effective than the homogeneous system, as the ethanol cosolvent required for substrate solubility caused a collapse of the resin (296). [Pg.366]

Reversed-phase chromatography employs a nonpolar stationary phase and a polar aqueous-organic mobile phase. The stationary phase may be a nonpolar ligand, such as an alkyl hydrocarbon, bonded to a support matrix such as microparticulate silica, or it may be a microparticulate polymeric resin such as cross-linked polystyrene-divinylbenzene. The mobile phase is typically a binary mixture of a weak solvent, such as water or an aqueous buffer, and a strong solvent such as acetonitrile or a short-chain alcohol. Retention is modulated by changing the relative proportion of the weak and strong solvents. Additives may be incorporated into the mobile phase to modulate chromatographic selectivity, to suppress undesirable interactions of the analyte with the matrix, or to promote analyte solubility or stability. [Pg.28]

Soluble polymers that have been used in hquid-phase methodologies are listed in Fig. 5.1 [3, 7, 8, 34, 35]. Polyethylene glycol and non-cross-linked polystyrene are some of the most often used polymeric carriers for organic synthesis and have found frequent use in the preparation of soluble polymer-supported catalysts and reagents consequently, a brief discussion of these polymers is warranted. [Pg.245]

Many different soluble polymers have been used as supports for catalyst immobilization. Since solvation of otherwise insoluble catalysts can frequently be accom-pHshed by attachment to a soluble polymer, these supports have found significant use in the immobihzation of classical solution phase catalysts. Here, we will only survey polyethylene glycol (PEG) as a soluble polymeric support for catalysis. The use of other types of soluble polymers (e.g., polyethylene, non-cross-linked polystyrene) has been reviewed elsewhere [49]. [Pg.248]

In 2000, Benaglia and coworkers reported preparation of MeO-PEG supported quaternary ammonium salt (10) and examined the catalytic efficiency in a series of phase-transfer reactions (Fig. 5.3) [69]. The reactions occurred at lower temperatures and with shorter reaction times than with comparable insoluble 2% cross-linked polystyrene-supported quaternary ammonium salts, although yields varied with respect to classical solution phase quaternary ammonium salt catalyzed reactions. It was observed that yields dropped with a shorter linker, and that PEG alone was not responsible for the extent of phase-transfer catalysis. While the catalyst was recovered in good yield by precipitation, it contained an undetermined amount of sodium hydroxide, although the presence of this byproduct was found to have no effect on the recyclability of the catalyst... [Pg.252]

A key element in the original Merriheld procedure of solid-phase synthesis is the solid support system. That system consists of two parts a resin head and a. linker, an organic compound used to join the hrst amino acid to the resin head. The resin beads used by Merriheld are small spherical objects made of cross-linked polystyrene. This material consists primarily of the polymer polystyrene whose linear molecules are linked to each other at various positions by the addition of divinylhenzene (CH2 = CHCgH jCH =CH2). The hnal cross-linked material is relatively rigid, with enough hexihility to permit... [Pg.142]

Aiming at easier workup conditions, immobilization of several transition metal catalysts, which show activity for the epoxidation of allylic alcohols, on polymer support has been investigated. For example, Suzuki and coworkers incorporated an oxo-vanadium ion into cross-linked polystyrene resins functionalized with iminodiacetic acid or diethylenetri-amine derivatives (Scheme 57), which afforded a heterogeneous catalyst that can promote... [Pg.391]

The ready alkylation of heterocyclic thiols lends this link to applications in solid-phase synthesis. Although much more work has been done in other heterocyclic systems, a prototype solid-phase synthesis has been described in which the pteridine is built from a 2- or 4-alkylthiopyrimidine attached to a cross-linked polystyrene support <20030BG1909, 2003TL1267> Oxidative cleavage was preferred using DMDO to avoid unwanted by-products... [Pg.926]

The alternative strategy for heterogenization has been pursued by Blechert and co-workers, for a polymer-supported olefin metathesis catalyst. A polymer-anchored carbene precursor was prepared by coupling an alkoxide to a cross-linked polystyrene Merrifield-type resin. Subsequently, the desired polymer-bound carbene complex was formed by thermolytically induced elimination of ferf-butanol while heating the precursor resin in the presence of the desired transition metal fragment (Scheme 8.30). [Pg.365]

Ni(COD)2], supported catalyst activated by treatment with AIEt2(OEt) Phosphinated cross-linked polystyrene Butadiene 3,5... [Pg.225]

The oxidative hydrolysis and acetylation of olefins in the presence of palladium(II) salts are well-established as commercial routes to acetaldehyde and vinylacetate (46). Both processes have been investigated using supported catalysts. The oxidative hydrolysis has been briefly studied using palladium(ll) chloride supported on a cross-linked polystyrene resin containing cyano groups (64). Oxidative acetylation was effected using palladium(II) chloride supported on phosphinated silica (5). [Pg.228]


See other pages where Supported cross-linked polystyrene is mentioned: [Pg.2198]    [Pg.2198]    [Pg.199]    [Pg.86]    [Pg.329]    [Pg.232]    [Pg.248]    [Pg.146]    [Pg.166]    [Pg.414]    [Pg.42]    [Pg.1424]    [Pg.201]    [Pg.205]    [Pg.205]    [Pg.241]    [Pg.247]    [Pg.256]    [Pg.260]    [Pg.265]    [Pg.322]    [Pg.468]    [Pg.184]    [Pg.199]    [Pg.144]    [Pg.184]    [Pg.182]    [Pg.51]    [Pg.52]    [Pg.52]    [Pg.192]    [Pg.197]    [Pg.210]    [Pg.226]   
See also in sourсe #XX -- [ Pg.99 ]




SEARCH



Cross polystyrene

Polystyrene cross-linked

Polystyrene support

Polystyrene, cross-linking

© 2024 chempedia.info