Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical fluid, physical

Pure substance, phase behavior of, 24 663 Pure supercritical fluids, physical properties of, 24 4... [Pg.774]

Bartlett, P.N., Cook, D.C., George, M.W. et al. (2010) Phase behaviour and conductivity study on multi-component mixtures for electrodeposition in supercritical fluids. Physical Chemistry Chemical Physics, 12,492—501. [Pg.327]

As it has appeared in recent years that many hmdamental aspects of elementary chemical reactions in solution can be understood on the basis of the dependence of reaction rate coefficients on solvent density [2, 3, 4 and 5], increasing attention is paid to reaction kinetics in the gas-to-liquid transition range and supercritical fluids under varying pressure. In this way, the essential differences between the regime of binary collisions in the low-pressure gas phase and tliat of a dense enviromnent with typical many-body interactions become apparent. An extremely useful approach in this respect is the investigation of rate coefficients, reaction yields and concentration-time profiles of some typical model reactions over as wide a pressure range as possible, which pemiits the continuous and well controlled variation of the physical properties of the solvent. Among these the most important are density, polarity and viscosity in a contimiiim description or collision frequency. [Pg.831]

Physical property Gases Supercritical fluids Liquids... [Pg.221]

Physical properties of pure supercritical fluids may be found ia many of the standard reference textbooks and journals (10). There are also... [Pg.221]

In a different implementation (Fig. 10.3b), the recycling pump is fixed with respect to the zones. It is always located between zones IV and I where no solutes are present. In order to implement this idea, additional valves are needed, which makes the system more complex than the previous one. Its main interest is found when physical modulation is used, as in the supercritical fluid SMB, for which it can be shown that a great interest could be taken from a higher pressure in zone I [56]. The only way to obtain this result is to maintain the recycling pump immediately before zone I. [Pg.260]

Table 12-1. Physical parameters of selected supercritical fluids. Table 12-1. Physical parameters of selected supercritical fluids.
Chromatography is a physical method of separation in which the components to be separated are distributed between two phases, one of which is stationary (the stationary phase), while the other (the mobile phase) moves in a definite direction. A mobile phase is described as a fluid which percolates through or along the stationary bed in a definite direction . It may be a liquid, a gas or a supercritical fluid, while the stationary phase may be a solid, a gel or a liquid. If a liquid, it may be distributed on a solid, which may or may not contribute to the separation process. ... [Pg.24]

A supercritical fluid exhibits physical-chemical properties intermediate between those of liquids and gases. Mass transfer is rapid with supercritical fluids. Their dynamic viscosities are nearer to those in normal gaseous states. In the vicinity of the critical point the diffusion coefficient is more than 10 times that of a liquid. Carbon dioxide can be compressed readily to form a liquid. Under typical borehole conditions, carbon dioxide is a supercritical fluid. [Pg.11]

TABLE 20-12 Physical Properties of a Supercritical Fluid Fall between Those of a Typical Gas and Liquid... [Pg.14]

M Sacchetti, MM Van Oort. Spray-drying and supercritical fluid particle generation techniques. Inhalation Aerosols Physical and Biological Basis for Therapy 1996 337-384. [Pg.500]

Water is a very structurally versatile molecule. Water exists in all three physical states solid, liquid, and gas. Under extremely high temperature and pressure conditions, water can also become a supercritical fluid. Liquid water can be cooled carefully to below its freezing point without solidifying to ice, resulting in two possible forms of supercooled water. In the solid state, 13 different crystalline phases (polymorphous) and 3 amorphous forms (polyamorphous) of water are currently known. These fascinating faces of water are explored in detail in this section. [Pg.11]

Foreign uranium resources, 17 522 Foreman and Veatch cell, 9 664 Forensic analysts, certification of, 12 95 Forensic biology, 12 102-104 Forensic chemistry, 12 89-104 physical evidence in, 12 90-95 Forensic laboratories, local and state, 12 98 Forensics, liquid chromatography applications, 6 465 Forensic science laboratories, 12 95 Forensic science, supercritical fluid extraction in, 24 14 Forensic testing, 12 95-104 Forensic toxicology, interpretation of results in, 12 98... [Pg.377]

Comparison of physical properties of liquids, gases and supercritical fluids... [Pg.565]

Supercritical fluids (SCFs) are best known through their use for the decaffeination of coffee, which employs supercritical carbon dioxide (scCC ). In this chapter, we will demonstrate that SCFs also have many properties that make them interesting and useful reaction media. Firstly, the physical properties of SCFs will be explained, then the specialist equipment needed for carrying out reactions under high temperatures and pressures will be described. Finally, we will discuss issues relevant to the use of SCFs as solvents for reactions. [Pg.131]

Supercritical fluids have many features that render their use attractive in synthetic chemistry and separations. Their tunable physical properties allow reactions to be carried out under a variety of conditions and, in some cases, the selectivities and rates of reactions may be altered. The list of reactions that have been carried out in SCFs and compared with those in conventional solvents is continually growing. [Pg.145]

Although the general principles of separation processes are applicable widely across the process industries, more specialised techniques are now being developed. Reference is made in Chapter 13 to the use of supercritical fluids, such as carbon dioxide, for the extraction of components from naturally produced materials in the food industry, and to the applications of aqueous two-phase systems of low interfacial tensions for the separation of the products from bioreactors, many of which will be degraded by the action of harsh organic solvents. In many cases, biochemical separations may involve separation processes of up to ten stages, possibly with each utilising a different technique. Very often, differences in both physical and chemical properties are utilised. Frequently... [Pg.1109]

Lin, Y., et ah, Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. The Journal of Physical Chemistry B, 2005. 109(30) p. 14410-14415. [Pg.164]

Supercritical fluids possess favorable physical properties that result in good behavior for mass transfer of solutes in a column. Some important physical properties of liquids, gases, and supercritical fluids are compared in Table 4.1 [49]. It can be seen that solute diffusion coefficients are greater in a supercritical fluid than in a liquid phase. When compared to HPLC, higher analyte diffusivity leads to lower mass transfer resistance, which results in sharper peaks. Higher diffusivity also results in higher optimum linear velocities, since the optimum linear velocity for a packed column is proportional to the diffusion coefficient of the mobile phase for liquid-like fluids [50, 51]. [Pg.216]

The further optimization and development concerning stability and selectivity of the organometallic catalyst in these kinds of media and the application of isolation methodologies similar to CESS (catalysis and extraction using supercritical solutions [43]) together with the physical and chemical advantages of supercritical fluids can lead to high potential catalyst matrices that fulfil the requirements of industrial processes both for bulk and fine chemicals. [Pg.11]

The physical-chemical properties of a supercritical fluid are between those of liquids and gases supercritical fluids (SCFs) indicate the fluid state of a compound in pure substance or as the main component above its critical pressure (pc) and its critical temperature (Tc), but below the pressure for phase transition to the solid state, and in terms of SCF processing, a density close to or higher than its critical density. [Pg.111]


See other pages where Supercritical fluid, physical is mentioned: [Pg.189]    [Pg.1988]    [Pg.2000]    [Pg.1]    [Pg.141]    [Pg.324]    [Pg.300]    [Pg.14]    [Pg.14]    [Pg.821]    [Pg.916]    [Pg.135]    [Pg.206]    [Pg.212]    [Pg.310]    [Pg.119]    [Pg.133]    [Pg.705]    [Pg.565]    [Pg.25]    [Pg.261]    [Pg.375]   


SEARCH



Basic Physical Properties of Supercritical Fluids

Physical Properties of Pure Supercritical Fluids

Physical properties, supercritical fluids

Supercritical fluid separations physical properties

Supercritical fluids physical parameters

© 2024 chempedia.info