Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical crystallization

For phamraceuticals and special organic chemicals, solution crystallization, in which solvents are used, is the primary method of crystallization compared to other crystallization techniques such as melt or supercritical crystallization. Therefore, the goal of these chapters is to introduce basic properties of solution and crystals related to solution crystallization. The relevance of these basic properties to crystal qualities and crystallization operations will be highlighted with specific examples. [Pg.4]

Wubbolts FE. Supercritical crystallization. PhD thesis. Veenedaal, Netherlands Universal Press Science Publishers, 2000 209-226. [Pg.648]

Hydrothermal crystallisation processes occur widely in nature and are responsible for the formation of many crystalline minerals. The most widely used commercial appHcation of hydrothermal crystallization is for the production of synthetic quartz (see Silica, synthetic quartz crystals). Piezoelectric quartz crystals weighing up to several pounds can be produced for use in electronic equipment. Hydrothermal crystallization takes place in near- or supercritical water solutions (see Supercritical fluids). Near and above the critical point of water, the viscosity (300-1400 mPa s(=cP) at 374°C) decreases significantly, allowing for relatively rapid diffusion and growth processes to occur. [Pg.498]

A crystalline or semicrystalline state in polymers can be induced by thermal changes from a melt or from a glass, by strain, by organic vapors, or by Hquid solvents (40). Polymer crystallization can also be induced by compressed (or supercritical) gases, such as CO2 (41). The plasticization of a polymer by CO2 can increase the polymer segmental motions so that crystallization is kinetically possible. Because the amount of gas (or fluid) sorbed into the polymer is a dkect function of the pressure, the rate and extent of crystallization may be controUed by controlling the supercritical fluid pressure. As a result of this abiHty to induce crystallization, a history effect may be introduced into polymers. This can be an important consideration for polymer processing and gas permeation membranes. [Pg.223]

Supercritical fluids can be used to induce phase separation. Addition of a light SCF to a polymer solvent solution was found to decrease the lower critical solution temperature for phase separation, in some cases by mote than 100°C (1,94). The potential to fractionate polyethylene (95) or accomplish a fractional crystallization (21), both induced by the addition of a supercritical antisolvent, has been proposed. In the latter technique, existence of a pressure eutectic ridge was described, similar to a temperature eutectic trough in a temperature-cooled crystallization. [Pg.227]

Materials. Supercritical fluids offer many opportunities in materials processing, such as crystallization, recrystallization, comminution, fiber formation, blend formation, and microceUular (foam) formation. [Pg.228]

Gas AntisolventRecrystallizations. A limitation to the RESS process can be the low solubihty in the supercritical fluid. This is especially evident in polymer—supercritical fluid systems. In a novel process, sometimes termed gas antisolvent (GAS), a compressed fluid such as CO2 can be rapidly added to a solution of a crystalline soHd dissolved in an organic solvent (114). Carbon dioxide and most organic solvents exhibit full miscibility, whereas in this case the soHd solutes had limited solubihty in CO2. Thus, CO2 acts as an antisolvent to precipitate soHd crystals. Using C02 s adjustable solvent strength, the particle size and size distribution of final crystals may be finely controlled. Examples of GAS studies include the formation of monodisperse particles (<1 fiva) of a difficult-to-comminute explosive (114) recrystallization of -carotene and acetaminophen (86) salt nucleation and growth in supercritical water (115) and a study of the molecular thermodynamics of the GAS crystallization process (21). [Pg.228]

Supercriticalfluid solvents are those formed by operating a system above the critical conditions of the solvent. SolubiHties of many solutes ia such fluids often is much greater than those found for the same solutes but with the fluid at sub atmospheric conditions. Recently, there has been considerable iaterest ia usiag supercritical fluids as solvents ia the production of certain crystalline materials because of the special properties of the product crystals. Rapid expansion of a supercritical system rapidly reduces the solubiHty of a solute throughout the entire mixture. The resulting high supersaturation produces fine crystals of relatively uniform size. Moreover, the solvent poses no purification problems because it simply becomes a gas as the system conditions are reduced below critical. [Pg.356]

Crystallization Solutes may be crystallized from supercritical fluids by temperature and/or pressure changes, and by the PCA process described above. In the rapid expansion from supercritical solution (BESS) process, a SCR containing a dissolved solute is expanded through a nozzle or orifice in less than 1 ms to form small particles or fibers. A variety of inorganic crystals have been formed naturally and synthetically in SCR water. [Pg.2004]

Depolymerization, e.g., polyethylene terephthalate and cellulose hydrolysis Hydrothermal oxidation of organic wastes in water Crystallization, particle formation, and coatings Antisolvent crystallization, rapid expansion from supercritical fluid solution (RESS)... [Pg.14]

Crystallization by reaction to form metals, semiconductors (e.g.. Si), and metal oxides including nanocrystals Supercritical fluid deposition... [Pg.14]

FIG. 20-24 High -resolution TEM image of Si nanowires produced at 500 C and 24.1 MPa in supercritical hexane from gold seed crystals. Inset Electron diffraction pattern indexed for the <111> zone axis of Si indicates <110> growth direction. [Reprinted with permission from Lu et al. Nano Lett., 3(1), 93-99 (2003). Copyright 2003 American Chemical Society. ]... [Pg.19]

The heat of decomposition (238.4 kJ/mol, 3.92 kJ/g) has been calculated to give an adiabatic product temperature of 2150°C accompanied by a 24-fold pressure increase in a closed vessel [9], Dining research into the Friedel-Crafts acylation reaction of aromatic compounds (components unspecified) in nitrobenzene as solvent, it was decided to use nitromethane in place of nitrobenzene because of the lower toxicity of the former. However, because of the lower boiling point of nitromethane (101°C, against 210°C for nitrobenzene), the reactions were run in an autoclave so that the same maximum reaction temperature of 155°C could be used, but at a maximum pressure of 10 bar. The reaction mixture was heated to 150°C and maintained there for 10 minutes, when a rapidly accelerating increase in temperature was noticed, and at 160°C the lid of the autoclave was blown off as decomposition accelerated to explosion [10], Impurities present in the commercial solvent are listed, and a recommended purification procedure is described [11]. The thermal decomposition of nitromethane under supercritical conditions has been studied [12], The effects of very high pressure and of temperature on the physical properties, chemical reactivity and thermal decomposition of nitromethane have been studied, and a mechanism for the bimolecular decomposition (to ammonium formate and water) identified [13], Solid nitromethane apparently has different susceptibility to detonation according to the orientation of the crystal, a theoretical model is advanced [14], Nitromethane actually finds employment as an explosive [15],... [Pg.183]

CNG [Consolidated Natural Gas] A process for removing acid gases from natural gas and syngas, using supercritical carbon dioxide. Under development since 1973 by the Consolidated Natural Gas Research Company with assistance from the U.S. Department of Energy and Helipump Corporation. Liquid carbon dioxide is first used to extract the sulfur compounds. Crystallization at the triple point separates these sulfur compounds from the... [Pg.67]

Examples of solvent-mediated transformation monitoring include the conversion of anhydrous citric acid to the monohydrate form in water [235,236], CBZ with water [237] and ethanol-water mixtures [238,239], and cocrystallization studies of CBZ, caffeine, and theophylline with water [240]. Raman spectroscopy was used to monitor the crystallization rate and solute and solvent concentrations as griseofulvin was removed from an acetone solution using supercritical CO2 as an antisolvent [241]. Progesterone s crystallization profile was monitored as antisolvent was added [242]. [Pg.226]

Journal of Applied Polymer Science 11, No.7, 15th Aug.2000, p. 1478-87 MORPHOLOGIES OF BLENDS OF ISOTACTIC POLYPROPYLENE AND ETHYLENE COPOLYMER BY RAPID EXPANSION OF SUPERCRITICAL SOLUTION AND ISOBARIC CRYSTALLIZATION FROM SUPERCRITICAL SOLUTION... [Pg.57]


See other pages where Supercritical crystallization is mentioned: [Pg.61]    [Pg.10]    [Pg.11]    [Pg.61]    [Pg.61]    [Pg.10]    [Pg.11]    [Pg.61]    [Pg.3]    [Pg.226]    [Pg.338]    [Pg.2004]    [Pg.869]    [Pg.147]    [Pg.467]    [Pg.421]    [Pg.423]    [Pg.17]    [Pg.18]    [Pg.488]    [Pg.172]    [Pg.71]    [Pg.410]    [Pg.392]    [Pg.322]    [Pg.288]    [Pg.131]    [Pg.33]    [Pg.376]    [Pg.498]    [Pg.116]    [Pg.195]   


SEARCH



Crystallization from a Supercritical Solution (CSS)

Crystallization with Supercritical Fluids

Supercritical antisolvent crystallization

Supercritical fluid crystallization

Supercritical fluids crystalization from

Supercritical hydrothermal crystallization

© 2024 chempedia.info