Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercomputers properties

A parallel but more historically comprehensive discussion of glass stmcture and composition has been given (36). Prediction of stmctural parameters and consequent properties from theoretical principles has increased with the advent of supercomputers. Of particular interest to glass scientists... [Pg.287]

Successful systems design and fabrication depend on understanding the connections between microscale phenomena and macroscale behavior of materials. For example, with sufficient insight into intermolecular interactions, appropriate models, and the computational power of supercomputers, it may be possible to predict changes in macromolecular configurations when loads are imposed on polymers or changes in the properties of a material as a result of... [Pg.88]

To address these challenges, chemical engineers will need state-of-the-art analytical instruments, particularly those that can provide information about microstmctures for sizes down to atomic dimensions, surface properties in the presence of bulk fluids, and dynamic processes with time constants of less than a nanosecond. It will also be essential that chemical engineers become familiar with modem theoretical concepts of surface physics and chemistry, colloid physical chemistry, and rheology, particrrlarly as it apphes to free surface flow and flow near solid bormdaries. The application of theoretical concepts to rmderstanding the factors controlling surface properties and the evaluation of complex process models will require access to supercomputers. [Pg.187]

The program can solve both steady-state problems as well as time-dependent problems, and has provisions for both linear and nonlinear problems. The boundary conditions and material properties can vary with time, temperature, and position. The property variation with position can be a straight line function or or a series of connected straight line functions. User-written Fortran subroutines can be used to implement more exotic changes of boundary conditions, material properties, or to model control systems. The program has been implemented on MS DOS microcomputers, VAX computers, and CRAY supercomputers. The present work used the MS DOS microcomputer implementation. [Pg.494]

Levy (Chapter 6) has also explored the use of supercomputers to study detailed properties of biological macromolecule that are only Indirectly accessible to experiment, with particular emphasis on solvent effects and on the Interplay between computer simulations and experimental techniques such as NMR, X-ray structures, and vltratlonal spectra. The chapter by Jorgensen (Chapter 12) summarizes recent work on the kinetics of simple reactions In solutions. This kind of calculation provides examples of how simulations can address questions that are hard to address experimentally. For example Jorgensen s simulations predicted the existence of an Intermediate for the reaction of chloride Ion with methyl chloride In DMF which had not been anticipated experimentally, and they Indicate that the weaker solvation of the transition state as compared to reactants for this reaction In aqueous solution Is not due to a decrease In the number of hydrogen bonds, but rather due to a weakening of the hydrogen bonds. [Pg.8]

There are several other applications where significant gains could be made through the use of supercomputer simulations of detailed physical models. Reservoir simulations was one of the first areas where the value of supercomputing was recognized by Industrial companies. It Is only possible to measure a few properties of Interest to enhanced oil recovery. Furthermore, field tests are extremely expensive, and the monetary... [Pg.13]

The work described in this paper is an illustration of the potential to be derived from the availability of supercomputers for research in chemistry. The domain of application is the area of new materials which are expected to play a critical role in the future development of molecular electronic and optical devices for information storage and communication. Theoretical simulations of the type presented here lead to detailed understanding of the electronic structure and properties of these systems, information which at times is hard to extract from experimental data or from more approximate theoretical methods. It is clear that the methods of quantum chemistry have reached a point where they constitute tools of semi-quantitative accuracy and have predictive value. Further developments for quantitative accuracy are needed. They involve the application of methods describing electron correlation effects to large molecular systems. The need for supercomputer power to achieve this goal is even more acute. [Pg.160]

Calculation of thermochemical data using high-quality ab initio electronic structure calculations has been a long-standing goal. However, the availability of supercomputers and new theoretical techniques now allow the calculation of thermochemical properties with chemical accuracy, i.e., AHf to within... [Pg.344]

How does a rigorously calculated electrostatic potential depend upon the computational level at which was obtained p(r) Most ab initio calculations of V(r) for reasonably sized molecules are based on self-consistent field (SCF) or near Hartree-Fock wavefunctions and therefore do not reflect electron correlation in the computation of p(r). It is true that the availability of supercomputers and high-powered work stations has made post-Hartree-Fock calculations of V(r) (which include electron correlation) a realistic possibility even for molecules with 5 to 10 first-row atoms however, there is reason to believe that such computational levels are usually not necessary and not warranted. The Mpller-Plesset theorem states that properties computed from Hartree-Fock wave functions using one-electron operators, as is T(r), are correct through first order (Mpller and Plesset 1934) any errors are no more than second-order effects. [Pg.54]

There is no reason to expect that as the dimensions of a phase are reduced to the point where it contains a small number of molecules, its surface tension remains constant. This question has obvious relevance to important problems, such as condensation of droplets from supersaturated vapors. Although a number of authors have considered this problem, in these days of supercomputers, it is probably best handled by considering individual intermolecular interactions rather than a bulk property, such as surface tension. [Pg.325]

Molecular modelling is not strictly an analytical tool that can be used directly. It is, however, a valuable way of visualizing supramolecular systems and predicting structures. The most sophisticated methods are able to predict properties associated with the model that can usefully be compared to data gathered on the real system. This is useful when several different interpretations of an experiment arise as one model may be shown to fit the data best and so be the most probable explanation. The main limitations of molecular modelling, and computational techniques in general, are the accuracy of the output and the the size of simulation that can usefully be attempted without recourse to a supercomputer or massively parallel facility. [Pg.43]

Extensive DFT and PP calculations have permitted the establishment of important trends in chemical bonding, stabilities of oxidation states, crystal-field and SO effects, complexing ability and other properties of the heaviest elements, as well as the role and magnitude of relativistic effects. It was shown that relativistic effects play a dominant role in the electronic structures of the elements of the 7 row and heavier, so that relativistic calculations in the region of the heaviest elements are indispensable. Straight-forward extrapolations of properties from lighter congeners may result in erroneous predictions. The molecular DFT calculations in combination with some physico-chemical models were successful in the application to systems and processes studied experimentally such as adsorption and extraction. For theoretical studies of adsorption processes on the quantum-mechanical level, embedded cluster calculations are under way. RECP were mostly applied to open-shell compounds at the end of the 6d series and the 7p series. Very accurate fully relativistic DFB ab initio methods were used for calculations of the electronic structures of model systems to study relativistic and correlation effects. These methods still need further development, as well as powerful supercomputers to be applied to heavy element systems in a routine manner. Presently, the RECP and DFT methods and their combination are the best way to study the theoretical chemistry of the heaviest elements. [Pg.86]

Traditionally the vector feature has been the sole property of large scale supercomputers. With the advent of array processors, however, this important feature is becoming available to minicomputer users also. [Pg.94]


See other pages where Supercomputers properties is mentioned: [Pg.395]    [Pg.161]    [Pg.299]    [Pg.374]    [Pg.6]    [Pg.4]    [Pg.154]    [Pg.3]    [Pg.4]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.10]    [Pg.83]    [Pg.146]    [Pg.147]    [Pg.147]    [Pg.374]    [Pg.403]    [Pg.274]    [Pg.74]    [Pg.246]    [Pg.10]    [Pg.22]    [Pg.161]    [Pg.252]    [Pg.215]    [Pg.2]    [Pg.237]    [Pg.277]    [Pg.2727]    [Pg.5828]    [Pg.168]   
See also in sourсe #XX -- [ Pg.344 ]




SEARCH



Supercomputers

© 2024 chempedia.info