Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur trioxide, reaction

In the most common process for making sulfuric acid, sulfur is burned at a very high temperature in dry air to make sulfur dioxide, which is then reacted with more oxygen over a catalyst to make sulfur trioxide. Reaction of sulfur trioxide with water produces sulfuric acid. [Pg.18]

Sulfur trioxide, reaction with cyanogen chloride, 46, 24... [Pg.79]

Product removal during reaction. Sometimes the equilibrium conversion can be increased by removing the product (or one of the products) continuously from the reactor as the reaction progresses, e.g., by allowing it to vaporize from a liquid-phase reactor. Another way is to carry out the reaction in stages with intermediate separation of the products. As an example of intermediate separation, consider the production of sulfuric acid as illustrated in Fig. 2.4. Sulfur dioxide is oxidized to sulfur trioxide ... [Pg.36]

In many cases, the a-haloketone does not appear to be an intermediate in this reaction, since reagents such as sulfur trioxide, sulfuric, or 60% nitric add lead to 2-aminothiazole but with lower yields (11 to 43%). Formamidine disulfide [-S-C(=NH)NH2]2, a product of the oxidation of thiourea, seems to be the intermediate in this reaction, since upon treatment with ketones, it gives 2-aminothiazole (604). However, the true mechanism of this reaction has not yet been completely elucidated. [Pg.214]

IS reversible but can be driven to completion by several techniques Removing the water formed m the reaction for example allows benzene sulfonic acid to be obtained m vir tually quantitative yield When a solution of sulfur trioxide m sulfuric acid is used as the sulfonatmg agent the rate of sulfonation is much faster and the equilibrium is dis placed entirely to the side of products according to the equation... [Pg.479]

Sulfuric Acid. Generally, sulfuric acid of 93—99% is used. The sulfuric values may be fed to the plant as H2SO4, oleum (20% SO ), or even SO (see Sulfuric acid and sulfur trioxide). Commonly, both H2SO4 and oleum are used. The spHt between the two is determined by water balance. AH water entering the process or produced by side reactions reacts with the SO component of the oleum ... [Pg.196]

Ammonium fluorosulfate is produced from ammonium fluoride by reaction with sulfur trioxide, oleum, or potassium pyrosulfate, 1 2820 (48). Solutions of ammonium fluorosulfate show Htfle evidence of hydrolysis and the salt may be recrystallized from hot water. Ammonium fluorosulfate absorbs anhydrous ammonia to form a series of Hquid amines that contain 2.5—6 moles of ammonia per mole of salt (77). [Pg.250]

The stmcture of the ketones produced from unsymmetrical internal perfluoroepoxides has been reported (5). The epoxide ring may also be opened by strong protic acids such as fluorosulfonic acid or hydrogen fluoride at elevated temperatures (23—25). The ring opening of HFPO by sulfur trioxide at 150°C has been interpreted as an example of an electrophilic reaction (26) (eq. 3). [Pg.303]

Reaction with Occgacids and Salts. Hydrogen chloride reacts with sulfur trioxide yielding Hquid chlorosulfuric acid [7790-94-5] (qv). [Pg.444]

Bitumen Ionomers. Moisture-resistant asphalts (qv) have been prepared by reaction of metal oxides with acid-functionalized bitumens (75). Maleic anhydride or sulfur trioxide/trimethylamine complexes have been used successfully for introduction of acid groups into asphaltic bitumens. [Pg.409]

Hexafluoro-2,5-dihydrofuran [24849-02-3] is distilled into sulfur trioxide [7446-11-9] at 25°C. Addition of trimethyl borate [121-43-7] initiates a reaction which upon heating and distillation leads to a 53% yield of difluoromaleic anhydride. Dichloromaleic anhydride [1122-17-4] can be prepared with 92% selectivity by oxidation of hexachloro-1,3-butadiene with SO in the presence of iodine-containing molecules (65). Passing vaporized... [Pg.452]

This reaction is strongly exothermic and proceeds spontaneously from left to right for most common metallic sulfides under normal roasting conditions, ie, in air, because P q + Pq = - 20 kPa (0.2 atm) at temperatures ranging from 650 to 1000°C. The physical chemistry of the roasting process is more complex than indicated by equation 3 alone. Sulfur trioxide is also formed,... [Pg.165]

Sulfation and Sulfonation. a-Olefin reactions involving the introduction of sulfur-containing functional groups have commercial importance. As with many derivatives of olefins, several of these products have appHcations in the area of surfactants (qv) and detergents. Typical sulfur reagents utilized in these processes include sulfuric acid, oleum, chlorosulfonic acid, sulfur trioxide, and sodium bisulfite. [Pg.436]

In the United States, aluminum sulfate is usually produced by the reaction of bauxite or clay (qv) with sulfuric acid (see Sulfuric acid and sulfur trioxide). Bauxite is imported and more expensive than local clay, generally kaolin, which is more often used. Clay is first roasted to remove organics and break down the crystalline stmcture in order to make it more reactive. This is an energy intensive process. The purity of the starting clay or bauxite ore, especially the iron and potassium contents, are reflected in the assay of the final product. Thus the selection of the raw material is governed by the overall economics of producing a satisfying product. [Pg.176]

Rhenium oxides have been studied as catalyst materials in oxidation reactions of sulfur dioxide to sulfur trioxide, sulfite to sulfate, and nitrite to nitrate. There has been no commercial development in this area. These compounds have also been used as catalysts for reductions, but appear not to have exceptional properties. Rhenium sulfide catalysts have been used for hydrogenations of organic compounds, including benzene and styrene, and for dehydrogenation of alcohols to give aldehydes (qv) and ketones (qv). The significant property of these catalyst systems is that they are not poisoned by sulfur compounds. [Pg.164]

Reaction with cold nitric acid results primarily ia the formation of 5-nitrosahcyhc acid [96-97-9]. However, reaction with fuming nitric acid results ia decarboxylation as well as the formation of 2,4,6-trinitrophenol [88-89-1] (picric acid). Sulfonation with chlorosulfonic acid at 160°C yields 5-sulfosahcyhc acid [56507-30-3]. At higher temperatures (180°C) and with an excess of chlorosulfonic acid, 3,5-disulfosahcyhc acid forms. Sulfonation with hquid sulfur trioxide ia tetrachloroethylene leads to a nearly quantitative yield of 5-sulfosahcylc acid (1). [Pg.285]

Sulfamic acid [5329-14-6] (amidosulfuric acid), HSO2NH2, molecular weight 97.09, is a monobasic, inorganic, dry acid and the monoamide of sulfuric acid. Sulfamic acid is produced and sold in the form of water-soluble crystals. This acid was known and prepared in laboratories for nearly a hundred years before it became a commercially available product. The first preparation of this acid occurred around 1836 (1). Later work resulted in identification and preparation of sulfamic acid in its pure form (2). In 1936, a practical process which became the basis for commercial preparation was developed (3,4). This process, involving the reaction of urea with sulfur trioxide and sulfuric acid, continues to be the main method for production of sulfamic acid. [Pg.60]

Inorganic Reactions. Thermal decomposition of Hquid sulfamic acid begins at 209°C. At 260°C, sulfur dioxide, sulfur trioxide, nitrogen, water, and traces of other products, chiefly nitrogen compounds, result. [Pg.61]

Urea reacts with himing sulfuric acid in an exothermic reaction that needs agitation and cooling. After completion of the reaction, excess sulfur trioxide is removed by dilution or by other methods (45,46). A flow diagram of the process is shown in Figure 1. [Pg.63]

Aromatic Compounds. The accepted general mechanism (38—40,51) for the reaction of an aromatic compound with sulfur trioxide involves an activated intermediate as shown in equation 1. [Pg.79]

Benzene. The reaction of sulfur trioxide and ben2ene in an inert solvent is very fast at low temperatures. Yields of 90% ben2enesulfonic acid can be expected. Increased yields of about 95% can be reali2ed when the solvent is sulfur dioxide. In contrast, the use of concentrated sulfuric acid causes the sulfonation reaction to reach reflux equiUbrium after almost 30 hours at only an 80% yield. The by-product is water, which dilutes the sulfuric acid estabhshing an equiUbrium. [Pg.79]


See other pages where Sulfur trioxide, reaction is mentioned: [Pg.848]    [Pg.1206]    [Pg.110]    [Pg.848]    [Pg.848]    [Pg.848]    [Pg.1844]    [Pg.848]    [Pg.1206]    [Pg.110]    [Pg.848]    [Pg.848]    [Pg.848]    [Pg.1844]    [Pg.37]    [Pg.389]    [Pg.194]    [Pg.472]    [Pg.438]    [Pg.491]    [Pg.269]    [Pg.51]    [Pg.74]    [Pg.77]    [Pg.77]    [Pg.79]    [Pg.80]   
See also in sourсe #XX -- [ Pg.454 ]

See also in sourсe #XX -- [ Pg.60 , Pg.61 ]

See also in sourсe #XX -- [ Pg.393 ]

See also in sourсe #XX -- [ Pg.99 , Pg.452 ]




SEARCH



Reactions trioxide

Sulfur trioxide

© 2024 chempedia.info