Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur nucleophiles addition

Addition of Carbon, Oxygen, Nitrogen, and Sulfur Nucleophiles... [Pg.497]

This addition is general, extending to nitrogen, oxygen, carbon, and sulfur nucleophiles. This reactivity of the quinone methide (23) is appHed in the synthesis of a variety of stabili2ers for plastics. The presence of two tert-huty groups ortho to the hydroxyl group, is the stmctural feature responsible for the antioxidant activity that these molecules exhibit (see Antioxidants). [Pg.61]

Cycloahphatics capable of tertiary carbocation formation are candidates for nucleophilic addition of nitriles. HCN in strong sulfuric acid transforms 1-methyl-1-cyclohexanol to 1-methyl-1-cyclohexylamine through the formamide (47). The terpenes pinene (14) [2437-95-8] and limonene [5989-27-5] (15) each undergo a double addition of HCN to provide, after hydrolysis, the cycloahphatic diamine 1,8-menthanediamine (16) (48). [Pg.210]

The action of sulfur nucleophiles like sodium bisulfite and thiophenols causes even pteridines that are unreactive towards water or alcohols to undergo covalent addition reactions. Thus, pteridin-7-one smoothly adds the named S-nucleophiles in a 1 1 ratio to C-6 (65JCS6930). Similarly, pteridin-4-one (73) yields adducts (74) in a 2 1 ratio at C-6 and C-7 exclusively (equation 14), as do 4-aminopteridine and lumazine with sodium bisulfite. Xanthopterin forms a 7,8-adduct and 7,8-dihydropterin can easily be converted to sodium 5,6,7,8-tetrahydropterin-6-sulfonate (66JCS(C)285), which leads to pterin-6-sulfonic acid on oxidation (59HCA1854). [Pg.287]

The tetraimidosulfate anion [S(NtBu)4] , isoelectronic with 804 , is prepared by a methodology similar to that employed for the synthesis of triimidosulfites. The reaction of the sulfur triimide S(N Bu)3 with two equivalents of LiNH Bu produces the solvated monomeric complex [(thf)4Li2S(N Bu)4] (10.21) (Eq. 10.8). The nucleophilic addition of... [Pg.197]

Stereoselective epoxidation can be realized through either substrate-controlled (e.g. 35 —> 36) or reagent-controlled approaches. A classic example is the epoxidation of 4-t-butylcyclohexanone. When sulfonium ylide 2 was utilized, the more reactive ylide irreversibly attacked the carbonyl from the axial direction to offer predominantly epoxide 37. When the less reactive sulfoxonium ylide 1 was used, the nucleophilic addition to the carbonyl was reversible, giving rise to the thermodynamically more stable, equatorially coupled betaine, which subsequently eliminated to deliver epoxide 38. Thus, stereoselective epoxidation was achieved from different mechanistic pathways taken by different sulfur ylides. In another case, reaction of aldehyde 38 with sulfonium ylide 2 only gave moderate stereoselectivity (41 40 = 1.5/1), whereas employment of sulfoxonium ylide 1 led to a ratio of 41 40 = 13/1. The best stereoselectivity was accomplished using aminosulfoxonium ylide 25, leading to a ratio of 41 40 = 30/1. For ketone 42, a complete reversal of stereochemistry was observed when it was treated with sulfoxonium ylide 1 and sulfonium ylide 2, respectively. ... [Pg.5]

Complexes 79 show several types of chemical reactions (87CCR229). Nucleophilic addition may proceed at the C2 and S atoms. In excess potassium cyanide, 79 (R = R = R" = R = H) forms mainly the allyl sulfide complex 82 (R = H, Nu = CN) (84JA2901). The reaction of sodium methylate, phenyl-, and 2-thienyllithium with 79 (R = R = r" = R = H) follows the same route. The fragment consisting of three coplanar carbon atoms is described as the allyl system over which the Tr-electron density is delocalized. The sulfur atom may participate in delocalization to some extent. Complex 82 (R = H, Nu = CN) may be proto-nated by hydrochloric acid to yield the product where the 2-cyanothiophene has been converted into 2,3-dihydro-2-cyanothiophene. The initial thiophene complex 79 (R = R = r" = R = H) reacts reversibly with tri-n-butylphosphine followed by the formation of 82 [R = H, Nu = P(n-Bu)3]. Less basic phosphines, such as methyldiphenylphosphine, add with much greater difficulty. The reaction of 79 (r2 = r3 = r4 = r5 = h) with the hydride anion [BH4, HFe(CO)4, HW(CO)J] followed by the formation of 82 (R = Nu, H) has also been studied in detail. When the hydride anion originates from HFe(CO)4, the process is complicated by the formation of side products 83 and 84. The 2-methylthiophene complex 79... [Pg.14]

The biological activity of calicheamicin 4 (simplified structure) is based on the ability to damage DNA. At the reaction site, initially the distance between the triple bonds is diminished by an addition reaction of a sulfur nucleophile to the enone carbon-carbon double bond, whereupon the Bergman cyclization takes place leading to the benzenoid diradical 5, which is capable of cleaving double-stranded DNA." ... [Pg.40]

In addition there are certain other methods for the preparation such compounds. Upon heating of the thionocarbonate 2 with a trivalent phosphorus compound e.g. trimethyl phosphite, a -elimination reaction takes place to yield the olefin 3. A nucleophilic addition of the phosphorus to sulfur leads to the zwitterionic species 6, which is likely to react to the phosphorus ylide 7 via cyclization and subsequent desulfurization. An alternative pathway for the formation of 7 via a 2-carbena-l,3-dioxolane 8 has been formulated. From the ylide 7 the olefin 3 is formed stereospecifically by a concerted 1,3-dipolar cycloreversion (see 1,3-dipolar cycloaddition), together with the unstable phosphorus compound 9, which decomposes into carbon dioxide and R3P. The latter is finally obtained as R3PS ... [Pg.69]

The hydration reaction just described is typical of what happens when an aldehyde ot ketone is treated with a nucleophile of the type H-Y, where the Y atom is electronegative and can stabilize a negative charge (oxygen, halogen, or sulfur, for instance). In such reactions, the nucleophilic addition is reversible, with the equilibrium generally favoring the carbonyl reactant rather than the tetrahedral addition product. In other words, treatment of an aldehyde or... [Pg.706]

An illustrative example of the Michael reaction is that of the thiirene dioxide 19b with either hydroxylamine or hydrazine to give desoxybenzoin oxime (87) and desoxybenzoin azine (88), respectively, in good yields6 (see equation 29). The results were interpreted in terms of an initial nucleophilic addition to the a, j8-unsaturated sulfone system, followed by loss of sulfur dioxide and tautomerization. Interestingly, the treatment of the corresponding thiirene oxide (18a) with hydroxylamine also afforded 86 (as well as the dioxime of benzoin), albeit in a lower yield, but apparently via the same mechanistic pathway6. [Pg.410]

Sulfoxides (R1—SO—R2), which are tricoordinate sulfur compounds, are chiral when R1 and R2 are different, and a-sulfmyl carbanions derived from optically active sulfoxides are known to retain the chirality. Therefore, these chiral carbanions usually give products which are rich in one diastereomer upon treatment with some prochiral reagents. Thus, optically active sulfoxides have been used as versatile reagents for asymmetric syntheses of many naturally occurring products116, since optically active a-sulfinyl carbanions can cause asymmetric induction in the C—C bond formation due to their close vicinity. In the following four subsections various reactions of a-sulfinyl carbanions are described (A) alkylation and acylation, (B) addition to unsaturated bonds such as C=0, C=N or C= N, (C) nucleophilic addition to a, /5-unsaturated sulfoxides, and (D) reactions of allylic sulfoxides. [Pg.606]

We shall discuss first reactions in which hydrogen or a metallic ion (or in one case phosphorus or sulfur) adds to the hetero atom, and then reactions in which carbon adds to the hetero atom. Within each group, the reactions are classified by the nature of the nucleophile. Additions to isocyanides, which are different in character, are treated at the end. [Pg.1175]

The results of ab initio calculations provide evidence that Me2NC(S)-[14+] is stabilized by resonance electron donation from the a-thioamide group (A, Scheme 12) and by covalent bridging of sulfur to the benzylic carbon (B, Scheme 12).96 Direct resonance stabilization of the carbocation will increase the barrier to the nucleophile addition reaction, because of the requirement for the relatively large fractional loss of the stabilizing resonance interaction (A, Scheme 12) at the transition state for nucleophile addition to a-substituted benzyl carbocations.8,13,28 91-93 If the solvent adds exclusively to an open carbocation that is the minor species in a mixture of open and closed ions, then... [Pg.98]

The results of studies of the acid-catalyzed hydration of oxygen-, sulfur-, seleno-and nitrogen-substituted alkenes and the relevance of this work to partitioning of the corresponding carbocation intermediates (Chart 1) between deprotonation and nucleophile addition was reviewed in 1986.70. We present here a brief summary of this earlier review, along with additional discussion of recent literature. [Pg.105]

Compound 874, as a representative of derivatives with an electron-withdrawing substituent at C-[1 of the vinyl group, is easily prepared by elimination of one benzotriazole from 2,2-/fo(benzotriazol-l-yl)ethyl methyl ketone 873. The stereoselective elimination catalyzed by NaOH gives exclusively the (E) isomer of derivative 874. Addition of nucleophiles to the double bond of vinyl ketone 874 followed by elimination of benzotriazole leads to a,P unsaturated ketones 875. Amines used as nucleophiles do not need any catalysis, but reactions with carbon and sulfur nucleophiles require addition of a base. The total effect is nucleophilic substitution of the benzotriazolyl group at the i-carbon of orji-iinsaturatcd ketone (Scheme 142) <1996SC3773>. [Pg.99]

The first reaction is p-elimination in cysteine, serine, phosphoserine, and threonine residues due to attack by hydroxide ion, leading to the formation of very reactive dehydroalanine (DHA). In a cystine residue, this results in rupturing of the disulfide bond and liberation of a sulfide ion and free sulfur (Figure 13.4). Nucleophilic additions of the s-amino group of the protein-bound lysine to the double bond of DHA residue causes crosslinking of the polypeptide chain. After hydrolysis, a mixture of L-lysino-L-alanine and L-lysino-D-alanine, with probably a small proportion of dl and dd isomers,... [Pg.291]


See other pages where Sulfur nucleophiles addition is mentioned: [Pg.432]    [Pg.432]    [Pg.6]    [Pg.150]    [Pg.286]    [Pg.140]    [Pg.160]    [Pg.755]    [Pg.251]    [Pg.33]    [Pg.178]    [Pg.251]    [Pg.1148]    [Pg.104]    [Pg.229]    [Pg.61]    [Pg.409]    [Pg.410]    [Pg.623]    [Pg.300]    [Pg.409]    [Pg.410]    [Pg.623]    [Pg.289]    [Pg.342]    [Pg.28]    [Pg.99]    [Pg.91]    [Pg.1011]    [Pg.666]    [Pg.18]   


SEARCH



Nucleophiles, sulfur

Nucleophilic addition sulfur nucleophiles

Nucleophilic sulfur

Sulfur nucleophile

© 2024 chempedia.info