Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substrate failure adhesive bond

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

Fitzpatrick et al. [41] used small-spot XPS to determine the failure mechanism of adhesively bonded, phosphated hot-dipped galvanized steel (HDGS) upon exposure to a humid environment. Substrates were prepared by applying a phosphate conversion coating and then a chromate rinse to HDGS. Lap joints were prepared from substrates having dimensions of 110 x 20 x 1.2 mm using a polybutadiene (PBD) adhesive with a bond line thickness of 250 p,m. The Joints were exposed to 95% RH at 35 C for 12 months and then pulled to failure. [Pg.284]

Weak boundary layer. WBL theory proposes that a cohesively weak region is present at the adhesive-substrate interface, which leads to poor adhesion. This layer can prevent the formation of adhesive bonds, or the adhesive can preferentially form bonds with the boundary layer rather that the surface it was intended for. Typically, the locus of failure is interfacial or in close proximity to the silicone-substrate interface. One of the most common causes of a WBL being formed is the presence of contaminants on the surface of the substrate. The formation of a WBL can also result from migration of additives from the bulk of the substrate, to the silicone-substrate interface. Alternatively, molecular... [Pg.697]

Adhesion depends on a number of factors. Good adhesion is defined by most customers as substrate failure. The major adhesive manufacturers possess equipment that allows them to make bonds with customer substrates under conditions that closely simulate actual packaging lines. These bonds are peeled either automatically or by hand to gauge adhesion. The most important factors influencing adhesion are the wet-out of the substrate, partieularly by the polymer component of the adhesive system, and the specific adhesion with the substrate. Choice of resin is critical for both. Rosin, rosin esters and terpene phenolics are eommonly added for these purposes in EVA and EnBA-based systems. Adhesion at low temperatures is also influenced by the overall toughness of the system at the test temperature. [Pg.745]

Low surface energy substrates, such as polyethylene or polypropylene, are generally difficult to bond with adhesives. However, cyanoacrylate-based adhesives can be effectively utilized to bond polyolefins with the use of the proper primer/activa-tor on the surface. Primer materials include tertiary aliphatic and aromatic amines, trialkyl ammonium carboxylate salts, tetraalkyl ammonium salts, phosphines, and organometallic compounds, which are initiators for alkyl cyanoacrylate polymerization [33-36]. The primer is applied as a dilute solution to the polyolefin surface, solvent is allowed to evaporate, and the specimens are assembled with a small amount of the adhesive. With the use of primers, adhesive strength can be so strong that substrate failure occurs during the course of the shear tests, as shown in Fig. 11. [Pg.862]

Abstract—The effects of metal alkoxide type and relative humidity on the durability of alkoxide-primed, adhesively bonded steel wedge crack specimens have been determined. Aluminum tri-sec-butoxide, aluminum tri-tert-butoxide, tetrabutyl orthosilicate, and titanium(IV) butoxide were used as alkoxide primers. Grit-blasted, acetone-rinsed mild steel adherends were the substrates bonded with epoxy and polyethersulfone. The two aluminum alkoxides significantly enhanced the durability of the adhesively bonded steel, while the titanium alkoxide showed no improvement in durability over a nonprimed control. The silicon alkoxide-primed samples gave an intermediate response. The failure plane in the adhesively bonded samples varied with the relative humidity during the priming process. [Pg.569]

These adhesives have been found to adhere strongly to metals, glass, wood, ceramics, masonry, asphalt, leather, and plastics like polystyrene, phenolics, polycarbonates, ABS, cellulose acetate, polyesters, rubbers, and some polyolefins. In general, the most favorable results are noted in the bonding of steel and aluminum, perhaps because the bond strengths are more easily observed before substrate failure. [Pg.977]

Figure 4 shows failure types of the adhesive bonded joint under a pull strength test. The cohesive failures in Fig. 4(a) and (b) occur when fracture is developed either within the adhesive and substrate, while the adhesive failure in Fig. 4(c) separates the substrate and adhesive at the interface. [Pg.104]

Thus, the adhesive contacts the substrate via a layer of substances that frequently differ from the adhesive in composition. If the cohesion strength of these substances is less than that of the adhesive, this will determine the failure stress of the adhesive-bonded joint. The adhesive, which has the same composition as that of the adhesive in bulk, can form a weak zone in the substrate surface. Adhesives are polymers and the particular nature of a polymer must have effects at all stages of formation and operation of an adhesive-bonded joint. [Pg.17]

Thus, despite unsoundness of the structure of the polymer boundary layers, their mechanical properties can be high. The zone of failure of the adhesive-bonded joint in this case will depend on the correlation of the weakening and strengthening effects of the substrate on the polymer layer in contact with it. [Pg.22]

One of the principal reasons for failure of the adhesion bonds is a specific adsorption reaction of the medium with the material to be cemented at the boundary with the adhesive. There is an adsorption substitution of adhesive-substrate bonds by medium-substrate bonds. Surface structural defects that are present in each solid are the first to be subjected to adsorption. It is to be expected that the probability of appearance of such defects is higher at an interface of two materials with different properties. The rate of penetration of the medium along the polymer-substrate interface frequently substantially exceeds the rate of diffusion of the medium in pure polymer [212]. Adsorption substitution of the polymer macromolecules by water molecules on the metal surface explains the low water resistance of such adhesive-bonded joints as fluoroplastic-steel or polyethylene-steel [34]. The adhesion strength, which decreases during hold-up of adhesive-bonded joints in water, is frequently reestablished after the joints are dried [213]. [Pg.268]


See other pages where Substrate failure adhesive bond is mentioned: [Pg.282]    [Pg.314]    [Pg.345]    [Pg.783]    [Pg.787]    [Pg.256]    [Pg.11]    [Pg.14]    [Pg.183]    [Pg.187]    [Pg.196]    [Pg.249]    [Pg.137]    [Pg.137]    [Pg.167]    [Pg.457]    [Pg.213]    [Pg.391]    [Pg.298]    [Pg.306]    [Pg.317]    [Pg.22]    [Pg.127]    [Pg.159]    [Pg.529]    [Pg.576]    [Pg.115]    [Pg.298]    [Pg.325]    [Pg.368]    [Pg.744]    [Pg.805]    [Pg.19]    [Pg.406]    [Pg.203]    [Pg.2]    [Pg.23]    [Pg.124]    [Pg.252]   
See also in sourсe #XX -- [ Pg.151 ]




SEARCH



Adhesion adhesive failure

Adhesive bond

Adhesive bonding

Adhesive failure

Bond failure, adhesives

Bonding failure

Substrate Bonded

Substrate bonding

Substrate failure

Substrate failure adhesion

Substrate, adhesion

© 2024 chempedia.info