Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject reaction with ketones

On the subject of Grignard reagents, a review of their mechanism of reaction with ketones has been made by Ashby. [Pg.241]

In reactions with azides, ketones are directly converted to 5-hydroxytriazolines. Ketone enolate 247, generated by treatment of norbornanone 246 with LDA at 0°C, adds readily to azides to provide hydroxytriazolines 248 in 67-93% yield. Interestingly, l-azido-3-iodopropane subjected to the reaction with enolate 247 gives tetracyclic triazoline derivative 251 in 94% yield. The reaction starts from an electrophilic attack of the azide on the ketone a-carbon atom. The following nucleophilic attack on the carbonyl group in intermediate 249 results in triazoline 250. The process is completed by nucleophilic substitution of the iodine atom to form the tetrahydrooxazine ring of product 251 (Scheme 35) <2004JOC1720>. [Pg.35]

The vinyl triflate of Komfeld s ketone has been subjected to Heck reactions with methyl acrylate, methyl methacrylate, and methyl 3-(Af-rerf-butoxycarbonyl-lV-methyl)amino-2-methylenepropionate leading to a formal synthesis of lysergic acid [259]. A similar Heck reaction between l-(phenylsulfonyl)indol-5-yl triflate and dehydroalanine methyl ester was described by this research group [260]. Chloropyrazines undergo Heck couplings with both indole and 1-tosylindole, and these reactions are discussed in the pyrazine Chapter [261], Rajeswaran and Srinivasan described an interesting arylation of bromomethyl indole 229 with arenes [262]. Subsequent desulfurization and hydrolysis furnishes 2-arylmethylindoles 230. Bis-indole 231 was also prepared in this study. [Pg.126]

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]

Butenes were subjected to photosensitized reaction with molecular oxygen in methanol. 1-Butene proved unreactive. A single hydroperoxide, l-butene-3-hydroperoxide, was produced from 2-butene and isolated by preparative gas chromatography, Thermal and catalyzed decomposition of pure hydroperoxide in benzene and other solvents did not result in formation of any acetaldehyde or propionaldehyde. The absence of these aldehydes suggests that they arise by an addition mechanism in the autoxidation of butenes where they are important products. l-Butene-3-hydroperoxide in the absence of catalyst is converted predominantly to methyl vinyl ketone and a smaller quantity of methyl vinyl carbinol —volatile products usually not detected in important quantities in the autoxidation of butene. [Pg.105]

A rather more complex tertracyclic indole based compound lowers blood pressure by selective blockade of a 1-adrenergic receptors. Reaction of the anion from indole (72-1) with butyrolactone (72-2) leads to the scission of the carbon-oxygen bond in the reagent and the formation of the alkylated product (72-3). The acid is then cyclized onto the adjacent 2 position to give the ketone (72-4) by treatment with a Lewis acid such as polyphosphoric acid. Reaction with bromine then leads to the brominated ketone (72-5). This is subjected to reductive alkylation with ethylene... [Pg.624]

When the first electrophile was not a ketone or an aldehyde, as illustrated for the reaction of 276 with crotonyl chloride, the intermediate chelated alkenylmetal 278 could also be subjected to iodinolysis or palladium-catalyzed cross-coupling reactions with aryl and alkenyl iodides in the presence of a stoichiometric amount of CuBr as a promotor as well as a polar cosolvent such as IV, IV-di methyl acetamide (DMA) (equation 131)165 166. [Pg.933]

Reactions of 4,7-phenanthroline-5,6-dione have been the subject of considerable study. It is reduced to 5,6-dihydroxy-4,7-phenanthroline by Raney nickel hydrogenation226,249 or by aromatic thiols in benzene,262 and oxidized by permanganate to 3,3 -bipyridyl-2,2 -dicarboxylic acid.263 It forms bishemiketals with alcohols226 and diepoxides with diazomethane.226 The diepoxides by reaction with hydrochloric acid form diols of type 57, R = Cl, which on oxidation with lead tetraacetate give 3,3 -bipyridyl diketones of type 58, R = Cl. Methyl ketones of type 58, R = H, are also obtained by lead(IV) acetate oxidation of the diol 57, R = H, obtained by lithium aluminum hydride reduction of 57, R = Cl. With phenyldiazomethane and diphenyldiazomethane the dione forms 1,3-dioxole derivatives,264,265 which readily hydrolyze back to the dione with concomitant formation of benzaldehyde and benzophenone, respectively. [Pg.36]

Despite fruitful results of asymmetric hydrogenation of functionalized ketones, only limited examples have been reported for reaction of ketonic substrates with no functionality near the carbonyl group [1,162,254]. Transition-metal catalysts with a bidentate chiral phosphine, successfully used for functionalized ketones, are often ineffective for reduction of simple ketones in terms of reactivity and enantioselectivity [162b,c]. However, a breakthrough in this subject has been provided by the invention of a new chiral Ru catalyst system. [Pg.54]


See other pages where Subject reaction with ketones is mentioned: [Pg.356]    [Pg.31]    [Pg.108]    [Pg.157]    [Pg.124]    [Pg.465]    [Pg.120]    [Pg.337]    [Pg.171]    [Pg.382]    [Pg.60]    [Pg.69]    [Pg.235]    [Pg.524]    [Pg.110]    [Pg.514]    [Pg.656]    [Pg.472]    [Pg.285]    [Pg.75]    [Pg.327]    [Pg.355]    [Pg.468]    [Pg.195]    [Pg.328]    [Pg.131]    [Pg.275]    [Pg.40]    [Pg.258]    [Pg.475]    [Pg.124]    [Pg.274]    [Pg.275]    [Pg.45]    [Pg.374]    [Pg.124]    [Pg.977]    [Pg.842]    [Pg.436]    [Pg.95]   
See also in sourсe #XX -- [ Pg.116 ]

See also in sourсe #XX -- [ Pg.116 ]

See also in sourсe #XX -- [ Pg.116 ]




SEARCH



Ketone 1558 Subject

Reaction with ketone

Subject reactions

Subject reactions with

© 2024 chempedia.info