Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical properties Subject

We thank Dr. M. Hirano at Toray Research Center, Kamakura for providing us with the purified PS II. We also thank Dr. H. Minamikawa for the synthesis of Maln(Phyt)2 and Dr. K. Kawasaki for the FFEM experiments. This work was performed as a part of a R D project of AIST (subject Physical properties of membrane protein/lipid assemblies) and of International Joint Research Program FY 2001-2002 supported by NEDO. [Pg.139]

In the first chapter, devoted to thiazole itself, specific emphasis has been given to the structure and mechanistic aspects of the reactivity of the molecule most of the theoretical methods and physical techniques available to date have been applied in the study of thiazole and its derivatives, and the results are discussed in detail The chapter devoted to methods of synthesis is especially detailed and traces the way for the preparation of any monocyclic thiazole derivative. Three chapters concern the non-tautomeric functional derivatives, and two are devoted to amino-, hydroxy- and mercaptothiazoles these chapters constitute the core of the book. All discussion of chemical properties is complemented by tables in which all the known derivatives are inventoried and characterized by their usual physical properties. This information should be of particular value to organic chemists in identifying natural or Synthetic thiazoles. Two brief chapters concern mesoionic thiazoles and selenazoles. Finally, an important chapter is devoted to cyanine dyes derived from thiazolium salts, completing some classical reviews on the subject and discussing recent developments in the studies of the reaction mechanisms involved in their synthesis. [Pg.599]

Physical Properties. Relationships between fiber properties and their textile usefulness are in many cases quite obvious. Since fibers are frequently subjected to elevated temperatures, it is necessary that they have high melting or degradation points. It is also necessary that other fiber properties be relatively constant as a function of temperature over a useful temperature range. [Pg.268]

Standards have been a part of technology since building began, both at a scale that exceeded the capabiUties of an individual, and for a market other than the immediate family. Standardization minimizes disadvantageous diversity, assures acceptabiUty of products, and faciUtates technical communication. There are many attributes of materials that are subject to standardization, eg, composition, physical properties, dimensions, finish, and processing. Implicit to the realization of standards is the availabiUty of test methods and appropriate caUbration techniques. Apart from physical or artifactual standards, written or paper standards also must be considered, ie, their generation, promulgation, and interrelationships. [Pg.17]

Acrylic Polymers. Although considerable information on the plasticization of acryUc resins is scattered throughout journal and patent hterature, the subject is compHcated by the fact that acryUc resins constitute a large family of polymers rather than a single polymeric species. An infinite variation in physical properties may be obtained through copolymerization of two or more acryUc monomers selected from the available esters of acryUc and methacryhc acid (30) (see Acrylic esterpolya rs Methacrylic acid and derivatives). [Pg.129]

Because of the presence of an extended polyene chain, the chemical and physical properties of the retinoids and carotenoids are dominated by this feature. Vitamin A and related substances are yellow compounds which are unstable in the presence of oxygen and light. This decay can be accelerated by heat and trace metals. Retinol is stable to base but is subject to acid-cataly2ed dehydration in the presence of dilute acids to yield anhydrovitamin A [1224-18-8] (16). Retro-vitamin A [16729-22-9] (17) is obtained by treatment of retinol in the presence of concentrated hydrobromic acid. In the case of retinoic acid and retinal, reisomerization is possible after conversion to appropriate derivatives such as the acid chloride or the hydroquinone adduct. Table 1 Hsts the physical properties of -carotene [7235-40-7] and vitamin A. [Pg.96]

The chemical and physical properties of cellulose depend ia large measure on the spatial arrangements of the molecules. Therefore, cellulose stmctures have been studied iatensively, and the resulting information has been important ia helping to understand many other polymers. Despite the extent of work, however, there are stiU many controversies on the most important details. The source of the cellulose and its history of treatment both affect the stmcture at several levels. Much of the iadustrial processiag to which cellulose is subjected is iatended to alter the stmcture at various levels ia order to obtain desired properties. [Pg.239]

Tritium is the subject of various reviews (6—8), and a book (9) provides a comprehensive survey of the preparation, properties, and uses of tritium compounds. Selected physical properties for molecular tritium, are given in Table 1. [Pg.12]

The physical properties of spray-dried materials are subject to considerable variation, depending on the direction of flow of the inlet gas and its temperature, the degree and uniformity of atomization, the solids content of the feed, the temperature of the feed, and the degree of aeration of the feed. The properties of the product usually of greatest interest are (1) particle size, (2) bulk density, and (3) dustiness. The particle size is a function of atomizer-operating conditions and also of the solids content, liquid viscosity, liquid density, and feed rate. In general, particle size increases with solids content, viscosity, density, and feed rate. [Pg.1233]

Theories of molecular stracture attempt to describe the nature of chemical bonding both qualitatively and quantitatively. To be useful to chemists, the bonding theories must provide insight into the properties and reactivity of molecules. The stractural theories and concepts that are most useful in organic chemistry are the subject of this chapter. Our goal is to be able to relate molecular stracture, as depicted by stractural formulas and other types of stractural information, such as bond lengths and electronic distributions, to the chemical reactivity and physical properties of molecules. [Pg.2]

The use of the Hammett equation has also been extended to several new types of applications. Since these are not germane to the subject matter of the present chapter, we wiU simply mention work on applications to ethylenic and acetylenic compounds the various applications to physical properties, such as infrared frequencies and intensities, ultraviolet spectra, polarographic half-wave potentials, dipole moments,NMR and NQR spectra,and solubility data and applications to preparative data and biological activity. [Pg.212]

Thermal analysis helps in measuring the various physical properties of the polymers. In this technique, a polymer sample is subjected to a controlled temperature program in a specific atmosphere and properties are measured as a function of temperature. The controlled temperature program may involve either isothermal or linear rise or fall of temperature. The most common thermoanalytical techniques are (1) differential scanning analysis (DSC), (2) thermomechanical analysis (TMA), and (3) thermogravimetry (TG). [Pg.655]

The material in this section is divided into three parts. The first subsection deals with the general characteristics of chemical substances. The second subsection is concerned with the chemistry of petroleum it contains a brief review of the nature, composition, and chemical constituents of crude oil and natural gases. The final subsection touches upon selected topics in physical chemistry, including ideal gas behavior, the phase rule and its applications, physical properties of pure substances, ideal solution behavior in binary and multicomponent systems, standard heats of reaction, and combustion of fuels. Examples are provided to illustrate fundamental ideas and principles. Nevertheless, the reader is urged to refer to the recommended bibliography [47-52] or other standard textbooks to obtain a clearer understanding of the subject material. Topics not covered here owing to limitations of space may be readily found in appropriate technical literature. [Pg.297]

The next step in the design procedure is to select the materials. The considerations are the physical properties, tensile and compressive strength, impact properties, temperature resistance, differential expansion environmental resistance, stiffness, and the dynamic properties. In this example, the only factor of major concern is the long-term stiffness since this is a statically loaded product with minimum heat and environmental exposure. While some degree of impact strength is desirable to take occasional abuse, it is not really subjected to any significant impacts. [Pg.205]


See other pages where Physical properties Subject is mentioned: [Pg.238]    [Pg.1192]    [Pg.16]    [Pg.434]    [Pg.265]    [Pg.35]    [Pg.387]    [Pg.419]    [Pg.3]    [Pg.75]    [Pg.220]    [Pg.269]    [Pg.498]    [Pg.265]    [Pg.270]    [Pg.439]    [Pg.458]    [Pg.312]    [Pg.458]    [Pg.460]    [Pg.11]    [Pg.142]    [Pg.971]    [Pg.555]    [Pg.3]    [Pg.460]    [Pg.873]    [Pg.163]    [Pg.503]    [Pg.137]    [Pg.68]    [Pg.2]    [Pg.368]    [Pg.442]    [Pg.586]   
See also in sourсe #XX -- [ Pg.83 , Pg.92 , Pg.109 ]

See also in sourсe #XX -- [ Pg.83 , Pg.92 , Pg.109 ]




SEARCH



Subject properties

© 2024 chempedia.info