Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tritium, molecular

OtherApphca.tlons. Many appHcations of adsorption involving radioactive compounds simply parallel similar appHcations involving the same compounds in nonradio active forms, eg, radioactive carbon-14, or deuterium- or tritium-containing versions of CO2, H2O, hydrocarbons. For example, molecular sieve 2eohtes are commonly employed for these separations, just as for the corresponding nonradio active uses. [Pg.285]

In addition to H2, D2, and molecular tritium [100028-17-8] the following isotopic mixtures exist HD [13983-20-5] HT [14885-60-0] and DT [14885-61-1]. Table 5 Hsts the vapor pressures of normal H2, D2, and T2 at the respective boiling points and triple points. As the molecular weight of the isotope increases, the triple point and boiling point temperatures also increase. Other physical constants also differ for the heavy isotopes. A 98% ortho—25/q deuterium mixture (the low temperature form) has the following critical properties = 1.650 MPa(16.28 atm), = 38.26 K, 17 = 60.3 cm/mol3... [Pg.414]

Tritium is the subject of various reviews (6—8), and a book (9) provides a comprehensive survey of the preparation, properties, and uses of tritium compounds. Selected physical properties for molecular tritium, are given in Table 1. [Pg.12]

Ortho-Para Tritium. As in the case of molecular hydrogen, molecular tritium exhibits nuclear spin isomerism. The spin of the tritium nucleus is S, the same as that for the hydrogen nucleus, and therefore H2 and T2 obey the same nuclear isomeric statistics (16). Below 5 K, molecular tritium is... [Pg.12]

Isotopic Exchange Reactions. Exchange reactions between the isotopes of hydrogen are well known and well substantiated. The equihbrium constants for exchange between the various hydrogen molecular species have been documented (18). Kinetics of the radiation-induced exchange reactions of hydrogen, deuterium, and tritium have been critically and authoritatively reviewed (31). The reaction T2 + H2 — 2HT equiUbrates at room temperature even without a catalyst (30). [Pg.14]

Concentration by gas chromatography has also been demonstrated. Elution chromatography has been used on an activated alumina column to resolve the molecular species H2, HT, and T2, thereby indicating a technique for separation or concentration of tritium (54). This method was extended (55) to include deuterium components. The technique was first demonstrated in 1964 using macro quantities of all six hydrogen molecular species (56). [Pg.15]

Tritium is widely used as a tracer in molecular biology (see Radioactive tracers). [Pg.16]

In the molecular form, dihydrogen is a stable, colourless, odourless, tasteless gas with a very low mp and bp. Data are in Table 3.2 from which it is clear that the values for deuterium and tritium are substantially higher. [Pg.34]

Another result of the cold-fusion epopee that was positive for electrochemistry are the advances in the experimental investigation and interpretation of isotope effects in electrochemical kinetics. Additional smdies of isotope effects were conducted in the protium-deuterium-tritium system, which had received a great deal of attention previously now these effects have become an even more powerful tool for work directed at determining the mechanisms of electrode reactions, including work at the molecular level. Strong procedural advances have been possible not only in electrochemistry but also in the other areas. [Pg.633]

Isotopes of hydrogen. Three isotopes of hydrogen are known H, 2H (deuterium or D), 3H (tritium or T). Isotope effects are greater for hydrogen than for any other elements (and this may by a justification for the different names), but practically the chemical properties of H, D and T are nearly identical except in matters such as rates and equilibrium constants of reactions (see Tables 5.1a and 5.1b). Molecular H2 and D2 have two forms, ortho and para forms in which the nuclear spins are aligned or opposed, respectively. This results in very slight differences in bulk physical properties the two forms can be separated by gas chromatography. [Pg.323]

For general purpose tracer work, however, and particularly in polymer chemistry, the liquid scintillation counter surpasses all other instruments in its sensitivity and adaptability. There is no question on the author s mind that at the present time such an instrument would be the first choice, particularly where tritium, carbon-14 or sulphur-35 were involved. Samples for assay are dissolved in a phosphor whose major solvent usually consists of toluene, toluene-alcohol, or dioxan. Many polymers and low molecular weight compounds are readily soluble in these solvents. Prospective users should not be deterred by alleged complications due to "variable quench effects" as these effects are readily corrected for via internal or external standards or the channels ratio method (7, 46, 91). Dilution quench corrections, though valid, are tedious and unnecessary. Where samples are insoluble in phosphor they may be suspended (e.g. as gels or as paper cut from chromatograms, etc.) or they can be burnt and the combustion products absorbed in a suitable phosphor solution. A modification of the Schoniger flask combustion technique is particularly suitable for this purpose (43—45). [Pg.134]

Abeles and associates showed that when dioldehydratase (Table 16-1) catalyzes the conversion of l,2-[l-3H]propanediol to propionaldehyde, tritium appears in the coenzyme as well as in the final product. When 3H-containing coenzyme is incubated with unlabeled propanediol, the product also contains 3H, which was shown by chemical degradation to be exclusively on C-5 . Synthetic 5 -deoxyadenosyl coenzyme containing 3H in the 5 position transferred 3H to product. Most important, using a mixture of propanediol and ethylene glycol, a small amount of inter-molecular transfer was demonstrated that is, 3H was transferred into acetaldehyde, the product of dehydration of ethylene glycol. Similar results were also obtained with ethanolamine ammonia-lyase 399... [Pg.872]


See other pages where Tritium, molecular is mentioned: [Pg.1027]    [Pg.1027]    [Pg.642]    [Pg.32]    [Pg.12]    [Pg.12]    [Pg.13]    [Pg.15]    [Pg.15]    [Pg.17]    [Pg.103]    [Pg.304]    [Pg.315]    [Pg.332]    [Pg.415]    [Pg.197]    [Pg.716]    [Pg.32]    [Pg.624]    [Pg.160]    [Pg.208]    [Pg.174]    [Pg.421]    [Pg.283]    [Pg.312]    [Pg.162]    [Pg.50]    [Pg.149]    [Pg.361]    [Pg.82]    [Pg.642]    [Pg.642]    [Pg.398]    [Pg.478]    [Pg.95]    [Pg.38]    [Pg.39]    [Pg.41]    [Pg.4]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Tritium

© 2024 chempedia.info