Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject phenol

Thus phenol when subjected to the Schotten Baumann reaction first dissolves in the sodium hydroxide to give sodium phenoxide, which then undergoes CgH COCl + NaOCgH, CgHaCOOCeHj XaCl... [Pg.244]

Thus ring acylation of phenols is observed under Friedel-Crafts conditions because the presence of aluminum chloride causes that reaction to be subject to thermodynamic (equi librium) control... [Pg.1006]

Foams prepared from phenol—formaldehyde and urea—formaldehyde resins are the only commercial foams that are significantly affected by water (22). Polyurethane foams exhibit a deterioration of properties when subjected to a combination of light, moisture, and heat aging polyester-based foam shows much less hydrolytic stabUity than polyether-based foam (50,199). [Pg.415]

Nylon Cloth Grade with Phenolic Resin Binder. Grade N-1 has excellent electrical properties under high humidity conditions and good impact strength, but is subject to flow or creep under load, especially at temperatures higher than normal. [Pg.537]

Chemical Properties. Lignin is subject to oxidation, reduction, discoloration, hydrolysis, and other chemical and enzymatic reactions. Many ate briefly described elsewhere (51). Key to these reactions is the ability of the phenolic hydroxyl groups of lignin to participate in the formation of reactive intermediates, eg, phenoxy radical (4), quinonemethide (5), and phenoxy anion (6) ... [Pg.142]

Phenohc resins are produced by the condensation of phenol or a substituted phenol, such as cresol, with formaldehyde. These low cost resins have been produced commercially for more than 100 years and in the 1990s are produced by more than 40 companies in the United States. They are employed as adhesives in the plywood industry and in numerous under-the-hood appHcations in the automotive industry. Because of the cycHc nature of the automotive and home building industry, the consumption of phenol for the production of phenohc resins is subject to cycHc swings greater than that of the economy as a whole. [Pg.291]

The effect substitution on the phenolic ring has on activity has been the subject of several studies (11—13). Hindering the phenolic hydroxyl group with at least one bulky alkyl group ia the ortho position appears necessary for high antioxidant activity. Neatly all commercial antioxidants are hindered ia this manner. Steric hindrance decreases the ability of a phenoxyl radical to abstract a hydrogen atom from the substrate and thus produces an alkyl radical (14) capable of initiating oxidation (eq. 18). [Pg.224]

Procedures for shipping boric acid esters depend on the particular compound. Aryl borates produce phenols when in contact with water and are therefore subject to shipping regulations governing such materials and must carry a Corrosive Chemical label. Lower alkyl borates are flammable, flash points of methyl, ethyl, and butyl borates are 0, 32, and 94°C, respectively, and must be stored in approved areas. Other compounds are not hazardous, and may be shipped or stored in any convenient manner. Because borate esters are susceptible to hydrolysis, the more sensitive compounds should be stored and transferred in an inert atmosphere, such as nitrogen. [Pg.215]

The raw material has to be washed to remove impurities. Diluted sodium hydroxide allows the removal of phenols and benzonitrile, and diluted sulphuric acid reacts with pyridine bases. The resulting material is distilled to concentrate the unsaturated compounds (raw feedstock for coumarone-indene resin production), and separate and recover interesting non-polymerizable compounds (naphthalene, benzene, toluene, xylenes). Once the unsaturated compounds are distilled, they are treated with small amounts of sulphuric acid to improve their colour activated carbons or clays can be also used. The resulting material is subjected to polymerization. It is important to avoid long storage time of the feedstock because oxidation processes can easily occur, affecting the polymerization reaction and the colour of the coumarone-indene resins. [Pg.604]

Thousands of technical papers and many books have been written on the subject of phenolic resins. The polymer is used in hundreds of diverse applications and in very large volumes. It is used worldwide. In fact the term phenolic resin encompasses a wide variety of materials based on a broad range of phenols and co-monomers. In this short article, we cannot expect complete coverage. Our hope is that we can provide an understanding of the fundamental chemistries, uses, and values of these materials as well as enough references to permit the interested reader to begin his own exploration of the topic. [Pg.869]

Prior to 1890, formaldehyde was not commercially available [2]. Thus the first phenol-formaldehyde resins were made using formaldehyde equivalents such as methylene diacetate or methylal [2,20]. The first true phenol-formaldehyde resin was made by Kleeberg at the direction of Emil Fisher in 1891 [2,21]. Saliginen (o-hydroxymethyl phenol) was recognized as a condensation product of phenol and formaldehyde in 1894 and was the subject of United States patents in 1894 and 1896 [22,23]. [Pg.870]

The miotic effect induced by physostigmine lends itself to investigation of the interrelation of chemical constitution and pharmacological action, and Stedman has devoted much attention to this subject. Eseroline is devoid of miotic activity, so that the latter action in physostigmine must be mainly due to the fact that it is a methylurethane, and, since activity only becomes evident in the urethanes of phenolic bases or phenols with a basic side-chain, a basic nucleus for the urethanes appears also to be essential. [Pg.549]

The esters are prepared by first treating estradiol with the appropriate acid chloride. The resulting diester, 27, is then subjected to mild acid or basic hydrolysis in this way, the phenolic ester group is removed selectively. [Pg.161]

Alkylation of the monobenzyl ether of hydroquinone 34 with mesylate 35, gives ether 36. Hydrogenolytic removal of the benzyl group gives phenol 37. This affords cicloprolol (38) when subjected to the standard alkylation scheme 17]. In much the same vein, alkylation of g-hydroxy-phenylethanol 39, obtainable from the corresponding phenylacetic acid, with epichlorohydrin... [Pg.25]

Phenol, a white crystalline mass with a distinctive odor, becomes reddish when subjected to light. It is highly soluble in water, and the solution is weakly acidic. [Pg.273]

In view of this, the properties of / films were examined after they had been subjected to increasing amounts of ion exchange . In order to do this, detached films were exposed at 65°C for 7 h to a universal buffer adjusted to a suitable pH and the resistance of the film measured at 25°C in 3 n and O OOlN potassium chloride. The results obtained with a pentaerythritol alkyd are shown in Fig. 14.4 from which it can be seen that as the pH of the conditioning solution increased, the resistance of the film fell, until at a pH of about 7.5 it suddenly dropped. The resistance of the film then followed that of the solution in which it was immersed, i.e. it became a D-type film. Similar results were obtained with films of a tung oil phenolic varnish, although in this case the change-over point occurred at a higher pH, i.e. about 9. [Pg.601]

Benzene rings in both the skeleton structure and on the side groups can be subjected to substitution reactions. Such reactions do not normally cause great changes in the fundamental nature of the polymer, e.g. they seldom lead to chain scission or cross linking. (N.B. The phenolic resins provide an important exception here.)... [Pg.923]


See other pages where Subject phenol is mentioned: [Pg.1017]    [Pg.235]    [Pg.340]    [Pg.419]    [Pg.361]    [Pg.499]    [Pg.335]    [Pg.346]    [Pg.47]    [Pg.566]    [Pg.631]    [Pg.660]    [Pg.413]    [Pg.873]    [Pg.929]    [Pg.108]    [Pg.304]    [Pg.133]    [Pg.934]    [Pg.194]    [Pg.421]    [Pg.951]    [Pg.516]    [Pg.536]    [Pg.569]    [Pg.2]    [Pg.113]    [Pg.135]    [Pg.26]    [Pg.93]   
See also in sourсe #XX -- [ Pg.150 ]

See also in sourсe #XX -- [ Pg.97 ]

See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.7 , Pg.11 ]

See also in sourсe #XX -- [ Pg.174 , Pg.190 ]




SEARCH



Phenolate ions Subject

Phenolic compounds Subject

© 2024 chempedia.info