Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject dispersion

A general prerequisite for the existence of a stable interface between two phases is that the free energy of formation of the interface be positive were it negative or zero, fluctuations would lead to complete dispersion of one phase in another. As implied, thermodynamics constitutes an important discipline within the general subject. It is one in which surface area joins the usual extensive quantities of mass and volume and in which surface tension and surface composition join the usual intensive quantities of pressure, temperature, and bulk composition. The thermodynamic functions of free energy, enthalpy and entropy can be defined for an interface as well as for a bulk portion of matter. Chapters II and ni are based on a rich history of thermodynamic studies of the liquid interface. The phase behavior of liquid films enters in Chapter IV, and the electrical potential and charge are added as thermodynamic variables in Chapter V. [Pg.1]

As in tic, another method to vaUdate a chiral separation is to collect the individual peaks and subject them to some type of optical spectroscopy, such as, circular dichroism or optical rotary dispersion. Enantiomers have mirror image spectra (eg, the negative maxima for one enantiomer corresponds to the positive maxima for the other enantiomer). One problem with this approach is that the analytes are diluted in the mobile phase. Thus, the sample must be injected several times. The individual peaks must be collected and subsequently concentrated to obtain adequate concentrations for spectral analysis. [Pg.68]

When dispersed as a dust, adipic acid is subject to normal dust explosion hazards. See Table 3 for ignition properties of such dust—air mixtures. The material is an irritant, especially upon contact with the mucous membranes. Thus protective goggles or face shields should be worn when handling the material. Prolonged contact with the skin should also be avoided. Eye wash fountains, showers, and washing faciUties should be provided in work areas. However, MSDS Sheet400 (5) reports that no acute or chronic effects have been observed. [Pg.245]

Two main operational variables that differentiate the flotation of finely dispersed coUoids and precipitates in water treatment from the flotation of minerals is the need for quiescent pulp conditions (low turbulence) and the need for very fine bubble sizes in the former. This is accompHshed by the use of electroflotation and dissolved air flotation instead of mechanically generated bubbles which is common in mineral flotation practice. Electroflotation is a technique where fine gas bubbles (hydrogen and oxygen) are generated in the pulp by the appHcation of electricity to electrodes. These very fine bubbles are more suited to the flotation of very fine particles encountered in water treatment. Its industrial usage is not widespread. Dissolved air flotation is similar to vacuum flotation. Air-saturated slurries are subjected to vacuum for the generation of bubbles. The process finds limited appHcation in water treatment and in paper pulp effluent purification. The need to mn it batchwise renders it less versatile. [Pg.52]

The term flotoflocculation is used to describe the process of aggregating dispersed oil droplets by the aid of polymeric flocculants (flocculation) then subjecting them to conventional flotation. It is also used, genericaHy, to describe situations where particles are first aggregated then floated. [Pg.53]

Lubricants. Petroleum lubricants continue to be the mainstay for automotive, industrial, and process lubricants. Synthetic oils are used extensively in industry and for jet engines they, of course, are made from hydrocarbons. Since the viscosity index (a measure of the viscosity behavior of a lubricant with change in temperature) of lube oil fractions from different cmdes may vary from +140 to as low as —300, additional refining steps are needed. To improve the viscosity index (VI), lube oil fractions are subjected to solvent extraction, solvent dewaxing, solvent deasphalting, and hydrogenation. Furthermore, automotive lube oils typically contain about 12—14% additives. These additives maybe oxidation inhibitors to prevent formation of gum and varnish, corrosion inhibitors, or detergent dispersants, and viscosity index improvers. The United States consumption of lubricants is shown in Table 7. [Pg.367]

The WAG process has been used extensively in the field, particularly in supercritical CO2 injection, with considerable success (22,157,158). However, a method to further reduce the viscosity of injected gas or supercritical fluid is desired. One means of increasing the viscosity of CO2 is through the use of supercritical C02-soluble polymers and other additives (159). The use of surfactants to form low mobihty foams or supercritical CO2 dispersions within the formation has received more attention (160—162). Foam has also been used to reduce mobihty of hydrocarbon gases and nitrogen. The behavior of foam in porous media has been the subject of extensive study (4). X-ray computerized tomographic analysis of core floods indicate that addition of 500 ppm of an alcohol ethoxyglycerylsulfonate increased volumetric sweep efficiency substantially over that obtained in a WAG process (156). [Pg.193]

Mechanical Properties. Properties of typical grades of PBT, either as unfiUed neat resin, glass-fiber fiUed, and FR-grades, are set out in Table 8. This table also includes impact-modified grades which incorporate dispersions of elastomeric particles inside the semicrystalHne polyester matrix. These dispersions act as effective toughening agents which greatly improve impact properties. The mechanisms are not fiiUy understood in all cases. The subject has been discussed in detail (171) and the particular case of impact-modified polyesters such as PBT has also been discussed (172,173). [Pg.300]

Construction. The addition of PEO to concrete has been a subject of several iavestigations (172). Research studies and patent Hterature suggests that PEO can be used as a pumping aid to concrete where the lubricity of PEO allows concrete to be pumped to longer distances (173—176). In addition, PEO is also used to disperse the water more uniformly ia the concrete mixture that promotes better uniformity of the concrete mixture. Eormulations ia the constmction industry are proprietary and not easily available. [Pg.345]

Analytical methods aie utilised by all branches of the chemical iadustry. Sometimes the goal is the quaUtative deterniiaation of elemental and molecular constituents of a selected specimen of matter othertimes the goal is the quantitative measurement of the fractional distribution of those constituents and sometimes it is to monitor a process stream or a static system. Information concerning the various iadividual analytical methods may be found ia separate articles dispersed alphabetically throughout the Eniyclopedia. The articles ate iatroductions to topics each of which is the subject of numerous books and other pubhcations. [Pg.393]

High energy dyes are requited in the Thermosol appHcation and in those instances in which the dyed fabric is subjected to a heat-setting treatment. Each energy type has a characteristic rate of exhaust and, as a consequence, only disperse dyes of the same energy class are used in mixes for shade matching purposes. [Pg.450]

The shear rate available from various types of mixing and dispersion devices is known approximately and also the range of viscosities in which they can operate. This makes the selection of the mixing equipment subject to calculation of the shear stress required for the viscosity to be used. [Pg.1634]


See other pages where Subject dispersion is mentioned: [Pg.7]    [Pg.7]    [Pg.638]    [Pg.1193]    [Pg.1306]    [Pg.61]    [Pg.355]    [Pg.358]    [Pg.169]    [Pg.411]    [Pg.120]    [Pg.241]    [Pg.350]    [Pg.33]    [Pg.122]    [Pg.268]    [Pg.3]    [Pg.512]    [Pg.513]    [Pg.4]    [Pg.37]    [Pg.472]    [Pg.192]    [Pg.398]    [Pg.341]    [Pg.84]    [Pg.447]    [Pg.450]    [Pg.485]    [Pg.225]    [Pg.356]    [Pg.526]    [Pg.557]    [Pg.652]    [Pg.1225]    [Pg.1352]    [Pg.1472]    [Pg.1474]    [Pg.1480]    [Pg.1567]   
See also in sourсe #XX -- [ Pg.414 ]




SEARCH



Dispersion model Subject

London dispersion force Subject

Subject index dispersion

Ultrasound dispersion 660 Subject

© 2024 chempedia.info