Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene effect

Chains of polybutadiene were trapped in the network formed by cooling a butadiene-styrene copolymer until phase separation occurred for the styrene, effectively crosslinking the copolymer. At 25°C the loss modulus shows a maximum which is associated with the free chains. This maximum occurst at the following frequencies for the indicated molecular weights of polybutadiene ... [Pg.197]

M. Marie, N. Ashuror, and C. W. Macosko, Reactive Blending of Poly- (dimethylsiloxane) with Nylon 6 and Poly (styrene) Effect of Reactivity on Morphology, Polym. Eng. Sci., 41, 631-642 (2001). [Pg.671]

Bentein, L., D hooge, DJI., Reyniers, M.-F., Marin, G.B., 2012. Kinetic modeling of rttiniemulsion nitroxide mediated polymerization of styrene effect of particle diameter and nitroxide partitioning up to high conversion. Polymer 53, 681-693. [Pg.348]

In addition to benzene and naphthalene derivatives, heteroaromatic compounds such as ferrocene[232, furan, thiophene, selenophene[233,234], and cyclobutadiene iron carbonyl complexpSS] react with alkenes to give vinyl heterocydes. The ease of the reaction of styrene with sub.stituted benzenes to give stilbene derivatives 260 increases in the order benzene < naphthalene < ferrocene < furan. The effect of substituents in this reaction is similar to that in the electrophilic aromatic substitution reactions[236]. [Pg.56]

Dehydrogenation of alkylbenzenes although useful m the industrial preparation of styrene is not a general procedure and is not well suited to the laboratory prepara tion of alkenylbenzenes In such cases an alkylbenzene is subjected to benzylic bromi nation (Section 11 12) and the resulting benzylic bromide is treated with base to effect dehydrohalogenation... [Pg.483]

It is apparent from the size of the conjugated system here that numerous resonance possibilities exist in this species in both the radical and the molecular form. Styrene also has resonance structures in both forms. On the principle that these effects are larger for radicals than monomers, we conclude that the difference ep. - ej > 0 for both hemin and styrene. On the principle that greater resonance effects result from greater delocalization, we expect the difference to be larger for hemin than for styrene. According to Eq. (7.23), r j oc > 1. According to Eq. (7.24), i2 < 1. [Pg.444]

SAN resins themselves appear to pose few health problems in that they have been approved by the EDA for beverage botde use (149). The main concern is that of toxic residuals, eg, acrylonitrile, styrene, or other polymerization components such as emulsifiers, stabilizers, or solvents. Each component must be treated individually for toxic effects and safe exposure level. [Pg.197]

Examination of oven-aged samples has demonstrated that substantial degradation is limited to the outer surface (34), ie, the oxidation process is diffusion limited. Consistent with this conclusion is the observation that oxidation rates are dependent on sample thickness (32). Impact property measurements by high speed puncture tests have shown that the critical thickness of the degraded layer at which surface fracture changes from ductile to brittle is about 0.2 mm. Removal of the degraded layer restores ductiHty (34). Effects of embrittled surface thickness on impact have been studied using ABS coated with styrene—acrylonitrile copolymer (35). [Pg.203]

Monomer compositional drifts may also occur due to preferential solution of the styrene in the mbber phase or solution of the acrylonitrile in the aqueous phase (72). In emulsion systems, mbber particle size may also influence graft stmcture so that the number of graft chains per unit of mbber particle surface area tends to remain constant (73). Factors affecting the distribution (eg, core-sheU vs "wart-like" morphologies) of the grafted copolymer on the mbber particle surface have been studied in emulsion systems (74). Effects due to preferential solvation of the initiator by the polybutadiene have been described (75,76). [Pg.203]

Decabrom has poor uv stabiUty ia styrenic resias and causes significant discoloration. The use of uv stabilizers can minimize, but not eliminate, this effect. For styrenic apphcations that require uv stabiUty, several other brominated flame retardants are more suitable. In polyolefins, the uv stabiUty of decabrom is more easily improved by the use of stabilizers. [Pg.468]

Ethylenebis(tetrabromophthalimide). The additive ethylenebis(tetrabromophthalimide) [41291 -34-3] is prepared from ethylenediamine and tetrabromophthabc anhydride [632-79-1]. It is a specialty product used ia a variety of appHcations. It is used ia engineering thermoplastics and polyolefins because of its thermal stabiUty and resistance to bloom (42). It is used ia styrenic resias because of its uv stabiUty (43). This flame retardant has been shown to be more effective on a contained bromine basis than other brominated flame retardants ia polyolefins (10). [Pg.469]

In polymers such as polystyrene that do not readily undergo charring, phosphoms-based flame retardants tend to be less effective, and such polymers are often flame retarded by antimony—halogen combinations (see Styrene). However, even in such noncharring polymers, phosphoms additives exhibit some activity that suggests at least one other mode of action. Phosphoms compounds may produce a barrier layer of polyphosphoric acid on the burning polymer (4,5). Phosphoms-based flame retardants are more effective in styrenic polymers blended with a char-forming polymer such as polyphenylene oxide or polycarbonate. [Pg.475]

Sulfonated styrene—divinylbensene cross-linked polymers have been appHed in many of the previously mentioned reactions and also in the acylation of thiophene with acetic anhydride and acetyl chloride (209). Resins of this type (Dowex 50, Amherljte IR-112, and Permutit Q) are particularly effective catalysts in the alkylation of phenols with olefins (such as propylene, isobutylene, diisobutylene), alkyl haUdes, and alcohols (210) (see Ion exchange). Superacids. [Pg.564]

G-5—G-9 Aromatic Modified Aliphatic Petroleum Resins. Compatibihty with base polymers is an essential aspect of hydrocarbon resins in whatever appHcation they are used. As an example, piperylene—2-methyl-2-butene based resins are substantially inadequate in enhancing the tack of 1,3-butadiene—styrene based random and block copolymers in pressure sensitive adhesive appHcations. The copolymerization of a-methylstyrene with piperylenes effectively enhances the tack properties of styrene—butadiene copolymers and styrene—isoprene copolymers in adhesive appHcations (40,41). Introduction of aromaticity into hydrocarbon resins serves to increase the solubiHty parameter of resins, resulting in improved compatibiHty with base polymers. However, the nature of the aromatic monomer also serves as a handle for molecular weight and softening point control. [Pg.354]

Anionic polymerization of vinyl monomers can be effected with a variety of organometaUic compounds alkyllithium compounds are the most useful class (1,33—35). A variety of simple alkyllithium compounds are available commercially. Most simple alkyllithium compounds are soluble in hydrocarbon solvents such as hexane and cyclohexane and they can be prepared by reaction of the corresponding alkyl chlorides with lithium metal. Methyllithium [917-54-4] and phenyllithium [591-51-5] are available in diethyl ether and cyclohexane—ether solutions, respectively, because they are not soluble in hydrocarbon solvents vinyllithium [917-57-7] and allyllithium [3052-45-7] are also insoluble in hydrocarbon solutions and can only be prepared in ether solutions (38,39). Hydrocarbon-soluble alkyllithium initiators are used directiy to initiate polymerization of styrene and diene monomers quantitatively one unique aspect of hthium-based initiators in hydrocarbon solution is that elastomeric polydienes with high 1,4-microstmcture are obtained (1,24,33—37). Certain alkyllithium compounds can be purified by recrystallization (ethyllithium), sublimation (ethyllithium, /-butyUithium [594-19-4] isopropyllithium [2417-93-8] or distillation (j -butyUithium) (40,41). Unfortunately, / -butyUithium is noncrystaUine and too high boiling to be purified by distiUation (38). Since methyllithium and phenyllithium are crystalline soUds which are insoluble in hydrocarbon solution, they can be precipitated into these solutions and then redissolved in appropriate polar solvents (42,43). OrganometaUic compounds of other alkaU metals are insoluble in hydrocarbon solution and possess negligible vapor pressures as expected for salt-like compounds. [Pg.238]

AlkyUithium compounds are primarily used as initiators for polymerizations of styrenes and dienes (52). These initiators are too reactive for alkyl methacrylates and vinylpyridines. / -ButyUithium [109-72-8] is used commercially to initiate anionic homopolymerization and copolymerization of butadiene, isoprene, and styrene with linear and branched stmctures. Because of the high degree of association (hexameric), -butyIUthium-initiated polymerizations are often effected at elevated temperatures (>50° C) to increase the rate of initiation relative to propagation and thus to obtain polymers with narrower molecular weight distributions (53). Hydrocarbon solutions of this initiator are quite stable at room temperature for extended periods of time the rate of decomposition per month is 0.06% at 20°C (39). [Pg.239]

Pour-Point Depressants. The pour point of alow viscosity paraffinic oil may be lowered by as much as 30—40°C by adding 1.0% or less of polymethacrylates, polymers formed by Eriedel-Crafts condensation of wax with alkylnaphthalene or phenols, or styrene esters (22). As wax crystallizes out of solution from the Hquid oil as it cools below its normal pour point, the additive molecules appear to adsorb on crystal faces so as to prevent growth of an interlocking wax network which would otherwise immobilize the oil. Pour-point depressants become less effective with nonparaffinic and higher viscosity petroleum oils where high viscosity plays a dominant role in immobilizing the oil in a pour-point test. [Pg.242]

Isomerization is faciUtated by esterification at temperatures above 200°C or by using catalysts, such as piperidine and morpholine (6), that are effective in raising isomerization of fumarate to 95% completion. Resins made by using fumaric acid are exclusively fumarate polymers, demonstrate higher reactivity rates with styrene, and lead to a complete cross-linking reaction. [Pg.315]


See other pages where Styrene effect is mentioned: [Pg.112]    [Pg.112]    [Pg.24]    [Pg.123]    [Pg.441]    [Pg.442]    [Pg.442]    [Pg.446]    [Pg.470]    [Pg.54]    [Pg.197]    [Pg.278]    [Pg.279]    [Pg.469]    [Pg.490]    [Pg.354]    [Pg.357]    [Pg.478]    [Pg.225]    [Pg.375]    [Pg.377]    [Pg.379]    [Pg.43]    [Pg.469]    [Pg.5]    [Pg.192]    [Pg.413]    [Pg.148]    [Pg.315]   
See also in sourсe #XX -- [ Pg.214 ]




SEARCH



Divinylbenzene effect, styrene grafting

Styrene epoxidation electronic effects

Styrene epoxidation isotope effects

Styrene health effects

Styrene monomer propylene oxide effects

Styrene operating parameters, effect

Styrene oxidation, solvent effect

Styrene polymerization heat effects

Styrene polymerization solvent effects

© 2024 chempedia.info