Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stress corrosion cracking effect

Final Purification. Oxygen containing compounds (CO, CO2, H2O) poison the ammonia synthesis catalyst and must be effectively removed or converted to inert species before entering the synthesis loop. Additionally, the presence of carbon dioxide in the synthesis gas can lead to the formation of ammonium carbamate, which can cause fouHng and stress-corrosion cracking in the compressor. Most plants use methanation to convert carbon oxides to methane. Cryogenic processes that are suitable for purification of synthesis gas have also been developed. [Pg.349]

Conditions that favor dezincification include stagnant solutions, especially acidic ones, high temperatures, and porous scale formation (2). Additions of small amounts of arsenic, antimony, or phosphoms can increase the resistance to dezincification. These elements are, however, not entirely effective in preventing the dezincification of the two-phase (cc—P) brasses because dezincification of the P-phase is not prevented (31). Another area of corrosion concern involves appHed or residual stresses from fabrication that can lead to EIC of brasses in the form of stress-corrosion cracking. [Pg.280]

The conjoint action of a tensile stress and a specific corrodent on a material results in stress corrosion cracking (SCC) if the conditions are sufficiently severe. The tensile stress can be the residual stress in a fabricated structure, the hoop stress in a pipe containing fluid at pressures above ambient or in a vessel by virtue of the internal hydraulic pressure created by the weight of its contents. Stresses result from thermal expansion effects, the torsional stresses on a pump or agitator shaft and many more causes. [Pg.894]

Heterogeneities associated with a metal have been classified in Table 1.1 as atomic see Fig. 1.1), microscopic (visible under an optical microscope), and macroscopic, and their effects are considered in various sections of the present work. It is relevant to observe, however, that the detailed mechanism of all aspects of corrosion, e.g. the passage of a metallic cation from the lattice to the solution, specific effects of ions and species in solution in accelerating or inhibiting corrosion or causing stress-corrosion cracking, etc. must involve a consideration of the detailed atomic structure of the metal or alloy. [Pg.9]

Stress-corrosion cracking of all types of steels formed the topic of a recent conference , the proceedings of which deal in some detail with the effect of structure on the stress-corrosion susceptibility of these alloys. [Pg.53]

The arbitrary division of behaviour has been made because of the extreme behaviour of some chemicals that initiate small areas of attack on a well-passivated metal surface. The form of attack may manifest itself as stress-corrosion cracking, crevice attack or pitting. At certain temperatures and pressures, minute quantities of certain chemicals can result in this form of attack. Chloride ions, in particular, are responsible for many of the failures observed, and it can be present as an impurity in a large number of raw materials. This has led to the development of metals and alloys that can withstand pitting and crevice corrosion, but on the whole these are comparatively expensive. It has become important, therefore, to be able to predict the conditions where more conventional materials may be used. The effect of an increase in concentration on pitting corrosion follows a similar relationship to the Freundlich equation where... [Pg.415]

Alloys containing only a few per cent of zinc may fail if the stresses are high and the environment sufficiently corrosive. Most types of brass, besides the plain copper/zinc alloys, appear to be susceptible to stress corrosion. An extensive investigation of the effect of additions to 70/30 brass was carried out by Wilson, Edmunds, Anderson and Peirce , who found that about 1% Si was markedly beneficial. Other additions were beneficial under some circumstances and none of the 36 additions tested accelerated stress-corrosion cracking. Further results are given in later papers ... [Pg.705]

Investigations into the effects of arsenic and phosphorus in single-phase brasses on their susceptibility to intergranular attack and stress-corrosion cracking in seawater have shown that the normal addition of arsenic to... [Pg.708]

For commercially pure titanium, the specific environments to be avoided are pure methanol and red, fuming nitric acid " , although in both environments the presence of 2% of water will inhibit cracking. On the other hand, the presence of either bromine or iodine in methanol aggravates the effect. When it does occur, stress-corrosion cracking of commercially pure titanium is usually intergranular in habit. [Pg.873]

Fig. 8.3 Schematic representation of the stress corrosion cracking mechanism of the pit (after Pickering and Swann ). (a) Tubular pits initiated at solute-rich slip step. The pits may, but need not necessarily, follow the slip plane once they are initiated, (b) Ductile tearing along a plane containing the tubular pits. The stress is increased across the plane because of the reduced cross section and the stress raising effect... Fig. 8.3 Schematic representation of the stress corrosion cracking mechanism of the pit (after Pickering and Swann ). (a) Tubular pits initiated at solute-rich slip step. The pits may, but need not necessarily, follow the slip plane once they are initiated, (b) Ductile tearing along a plane containing the tubular pits. The stress is increased across the plane because of the reduced cross section and the stress raising effect...
However, whilst the effects of change in alloy composition upon stress-corrosion cracking susceptibility in the present context may be partly due to their effect upon stacking-fault energy, this does not constitute a complete explanation, since alloying may have significant effects upon electrochemical parameters. The effect of the zinc content of brasses upon their filming characteristics has already been mentioned, while in more recent... [Pg.1156]

Fig. 8.9 Schematic illustration of the effect of time of exposure upon stress-corrosion crack... Fig. 8.9 Schematic illustration of the effect of time of exposure upon stress-corrosion crack...
If crack propagation occurs by dissolution at an active crack tip, with the crack sides rendered inactive by filming, the maintenance of film-free conditions may be dependent not only upon the electrochemical conditions but also upon the rate at which metal is exposed at the crack tip by plastic strain. Thus, it may not be stress, per se, but the strain rate that it produces, that is important, as indicated in equation (8.8). Clearly, at sufficiently high strain rates a ductile fracture may be propagated faster than the electrochemical reactions can occur whereby a stress-corrosion crack is propagated, but as the strain rate is decreased so will stress-corrosion crack propagation be facilitated. However, further decreases in strain rate will eventually result in a situation where the rate at which new surface is created by straining does not exceed the rate at which the surface is rendered inactive and hence stress corrosion may effectively cease. [Pg.1168]

Fig. 8.11 Effect of beam deflection rate of cantilever beam specimens upon stress-corrosion crack velocity of carbon steel in carbonate-bicarbonate solution... Fig. 8.11 Effect of beam deflection rate of cantilever beam specimens upon stress-corrosion crack velocity of carbon steel in carbonate-bicarbonate solution...
Fig. 8.15 Effects of potential upon the stress-corrosion cracking of various steels in CO3-HCO3 solution in slow strain rate tests (after Parkins et al )... Fig. 8.15 Effects of potential upon the stress-corrosion cracking of various steels in CO3-HCO3 solution in slow strain rate tests (after Parkins et al )...

See other pages where Stress corrosion cracking effect is mentioned: [Pg.548]    [Pg.116]    [Pg.119]    [Pg.123]    [Pg.125]    [Pg.370]    [Pg.397]    [Pg.223]    [Pg.230]    [Pg.2435]    [Pg.15]    [Pg.342]    [Pg.50]    [Pg.51]    [Pg.53]    [Pg.138]    [Pg.233]    [Pg.706]    [Pg.835]    [Pg.1151]    [Pg.1152]    [Pg.1155]    [Pg.1158]    [Pg.1158]    [Pg.1159]    [Pg.1159]    [Pg.1161]    [Pg.1164]    [Pg.1165]    [Pg.1166]    [Pg.1169]    [Pg.1178]    [Pg.1180]    [Pg.1183]   
See also in sourсe #XX -- [ Pg.8 , Pg.47 ]

See also in sourсe #XX -- [ Pg.8 , Pg.47 ]




SEARCH



Corrosion effects

Corrosive stress

Cracking effect

Effective stress

Stress crack

Stress crack corrosion

Stress-corrosion cracking

© 2024 chempedia.info