Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stress constitutive equations

The transformed plane stress constitutive equation 4.4 can be inverted to give ... [Pg.80]

The dependence of the stress on the strain-deformation history of macro-molecular liquids can be incorporated in two ways. The stress constitutive equation can be formulated as a differential equation, in which the extra stress r is the solution of an equation that is typically of the general form... [Pg.6731]

The stress constitutive equation can also be formulated as an integral over the history of the deformation. The most common form used for simulations is... [Pg.6732]

Details of the kinematics within the mold, which would be required for the computation of stress distributions, require solution of the full (quasi-static) momentum equation with an appropriate stress constitutive equation. This can be done routinely for purely viscous fluids for flows with two velocity components... [Pg.6739]

Equation 7.9 expresses the total axial stress in terms of the extra stress, so the stress constitutive equation provides the link to the kinematics. [Pg.85]

This problem considers a particular kind of deformation-uniaxial extension. The same procedure can be applied to other kinds of deformation, and the result is a material function or, in the case of rubber, a material constant that relates a component of the stress to a component of the strain imposed on the material. More generally, though, we can determine the relationship between an arbitrary, three-dimensional deformation and the resulting three-dimensional stress. Such a relationship is called the stress constitutive equation. We will develop such a relationship for rubbers after we review the definitions of stress and the strain in three dimensions. [Pg.420]

Equation (10.7.8) is called a stress constitutive equation, and it relates a three-dimensional measure of strain to the three-dimensional stress. For rubbers, Eq. (10.7.8) obviously holds for the specialized case of imiaxial extension. By similar reasoning, it can be shown to hold for other idealized deformations such as biaxial extension and shear. Indeed, Eq. (10.7.8) is valid for all volumepreserving deformations [10]. The only material quantity appearing in this... [Pg.428]

A constitutive equation is a relation between the extra stress (t) and the rate of deformation that a fluid experiences as it flows. Therefore, theoretically, the constitutive equation of a fluid characterises its macroscopic deformation behaviour under different flow conditions. It is reasonable to assume that the macroscopic behaviour of a fluid mainly depends on its microscopic structure. However, it is extremely difficult, if not impossible, to establish exact quantitative... [Pg.3]

Material parameters defined by Equations (1.11) and (1.12) arise from anisotropy (i.e. direction dependency) of the microstructure of long-chain polymers subjected to liigh shear deformations. Generalized Newtonian constitutive equations cannot predict any normal stress acting along the direction perpendicular to the shearing surface in a viscometric flow. Thus the primary and secondary normal stress coefficients are only used in conjunction with viscoelastic constitutive models. [Pg.6]

Other combinations of upper- and lower-convected time derivatives of the stress tensor are also used to construct constitutive equations for viscoelastic fluids. For example, Johnson and Segalman (1977) have proposed the following equation... [Pg.12]

A frequently used example of Oldroyd-type constitutive equations is the Oldroyd-B model. The Oldroyd-B model can be thought of as a description of the constitutive behaviour of a fluid made by the dissolution of a (UCM) fluid in a Newtonian solvent . Here, the parameter A, called the retardation time is de.fined as A = A (r s/(ri + s), where 7]s is the viscosity of the solvent. Hence the extra stress tensor in the Oldroyd-B model is made up of Maxwell and solvent contributions. The Oldroyd-B constitutive equation is written as... [Pg.12]

All of the described differential viscoelastic constitutive equations are implicit relations between the extra stress and the rate of deformation tensors. Therefore, unlike the generalized Newtonian flows, these equations cannot be used to eliminate the extra stress in the equation of motion and should be solved simultaneously with the governing flow equations. [Pg.12]

Application of the weighted residual method to the solution of incompressible non-Newtonian equations of continuity and motion can be based on a variety of different schemes. Tn what follows general outlines and the formulation of the working equations of these schemes are explained. In these formulations Cauchy s equation of motion, which includes the extra stress derivatives (Equation (1.4)), is used to preseiwe the generality of the derivations. However, velocity and pressure are the only field unknowns which are obtainable from the solution of the equations of continuity and motion. The extra stress in Cauchy s equation of motion is either substituted in terms of velocity gradients or calculated via a viscoelastic constitutive equation in a separate step. [Pg.71]

The first finite element schemes for differential viscoelastic models that yielded numerically stable results for non-zero Weissenberg numbers appeared less than two decades ago. These schemes were later improved and shown that for some benchmark viscoelastic problems, such as flow through a two-dimensional section with an abrupt contraction (usually a width reduction of four to one), they can generate simulations that were qualitatively comparable with the experimental evidence. A notable example was the coupled scheme developed by Marchal and Crochet (1987) for the solution of Maxwell and Oldroyd constitutive equations. To achieve stability they used element subdivision for the stress approximations and applied inconsistent streamline upwinding to the stress terms in the discretized equations. In another attempt, Luo and Tanner (1989) developed a typical decoupled scheme that started with the solution of the constitutive equation for a fixed-flow field (e.g. obtained by initially assuming non-elastic fluid behaviour). The extra stress found at this step was subsequently inserted into the equation of motion as a pseudo-body force and the flow field was updated. These authors also used inconsistent streamline upwinding to maintain the stability of the scheme. [Pg.81]

In the decoupled scheme the solution of the constitutive equation is obtained in a separate step from the flow equations. Therefore an iterative cycle is developed in which in each iterative loop the stress fields are computed after the velocity field. The viscous stress R (Equation (3.23)) is calculated by the variational recovery procedure described in Section 1.4. The elastic stress S is then computed using the working equation obtained by application of the Galerkin method to Equation (3.29). The elemental stiffness equation representing the described working equation is shown as Equation (3.32). [Pg.85]

In generalized Newtonian fluids, before derivation of the final set of the working equations, the extra stress in the expanded equations should be replaced using the components of the rate of strain tensor (note that the viscosity should also be normalized as fj = rj/p). In contrast, in the modelling of viscoelastic fluids, stress components are found at a separate step through the solution of a constitutive equation. This allows the development of a robust Taylor Galerkin/ U-V-P scheme on the basis of the described procedure in which the stress components are all found at time level n. The final working equation of this scheme can be expressed as... [Pg.136]

Solution of the flow equations has been based on the application of the implicit 0 time-stepping/continuous penalty scheme (Chapter 4, Section 5) at a separate step from the constitutive equation. The constitutive model used in this example has been the Phan-Thien/Tanner equation for viscoelastic fluids given as Equation (1.27) in Chapter 1. Details of the finite element solution of this equation are published elsewhere and not repeated here (Hou and Nassehi, 2001). The predicted normal stress profiles along the line AB (see Figure 5.12) at five successive time steps are. shown in Figure 5.13. The predicted pattern is expected to be repeated throughout the entire domain. [Pg.157]

A similar approximation should be applied to the components of the equation of motion and the significant terms (with respect to ) consistent with the expanded constitutive equation identified. This analy.sis shows that only FI and A appear in the zero-order terms and hence should be evaluated up to the second order. Furthermore, all of the remaining terms in Equation (5.29), except for S, appear only in second-order terms of the approximate equations of motion and only their leading zero-order terms need to be evaluated to preserve the consistency of the governing equations. The term E, which only appears in the higlier-order terms of the expanded equations of motion, can be evaluated approximately using only the viscous terms. Therefore the final set of the extra stress components used in conjunction with the components of the equation of motion are... [Pg.165]

For some materials the linear constitutive relation of Newtonian fluids is not accurate. Either stress depends on strain in a more complex way, or variables other than the instantaneous rate of strain must be taken into account. Such fluids are known collectively as non-Newtonian. Many different types of behavior have been observed, ranging from fluids for which the viscosity in the Navier-Stokes equation is a simple function of the shear rate to the so-called viscoelastic fluids, for which the constitutive equation is so different that the normal stresses can cause the fluid to flow in a manner opposite to that predicted for a Newtonian fluid. [Pg.89]

Many industrially important fluids cannot be described in simple terms. Viscoelastic fluids are prominent offenders. These fluids exhibit memory, flowing when subjected to a stress, but recovering part of their deformation when the stress is removed. Polymer melts and flour dough are typical examples. Both the shear stresses and the normal stresses depend on the history of the fluid. Even the simplest constitutive equations are complex, as exemplified by the Oldroyd expression for shear stress at low shear rates ... [Pg.96]

The design of smart materials and adaptive stmctures has required the development of constitutive equations that describe the temperature, stress, strain, and percentage of martensite volume transformation of a shape-memory alloy. These equations can be integrated with similar constitutive equations for composite materials to make possible the quantitative design of stmctures having embedded sensors and actuators for vibration control. The constitutive equations for one-dimensional systems as well as a three-dimensional representation have been developed (7). [Pg.465]

The jump conditions must be satisfied by a steady compression wave, but cannot be used by themselves to predict the behavior of a specific material under shock loading. For that, another equation is needed to independently relate pressure (more generally, the normal stress) to the density (or strain). This equation is a property of the material itself, and every material has its own unique description. When the material behind the shock wave is a uniform, equilibrium state, the equation that is used is the material s thermodynamic equation of state. A more general expression, which can include time-dependent and nonequilibrium behavior, is called the constitutive equation. [Pg.12]

Several generalizations of the inelastic theory to large deformations are developed in Section 5.4. In one the stretching (velocity strain) tensor is substituted for the strain rate. In order to make the resulting constitutive equations objective, i.e., invariant to relative rotation between the material and the coordinate frame, the stress rate must be replaced by one of a class of indifferent (objective) stress rates, and the moduli and elastic limit functions must be isotropic. In the elastic case, the constitutive equations reduce to the equation of hypoelastidty. The corresponding inelastic equations are therefore termed hypoinelastic. [Pg.119]

The referential formulation is translated into an equivalent current spatial description in terms of the Cauchy stress tensor and Almansi strain tensor, which have components relative to the current spatial configuration. The spatial constitutive equations take a form similar to the referential equations, but the moduli and elastic limit functions depend on the deformation, showing effects that have misleadingly been called strain-induced hardening and anisotropy. Since the components of spatial tensors change with relative rigid rotation between the coordinate frame and the material, it is relatively difficult to construct specific constitutive functions to represent particular materials. [Pg.119]

The deformation may be viewed as composed of a pure stretch followed by a rigid rotation. Stress and strain tensors may be defined whose components are referred to an intermediate stretched but unrotated spatial configuration. The referential formulation may be translated into an unrotated spatial description by using the equations relating the unrotated stress and strain tensors to their referential counterparts. Again, the unrotated spatial constitutive equations take a form similar to their referential and current spatial counterparts. The unrotated moduli and elastic limit functions depend on the stretch and exhibit so-called strain-induced hardening and anisotropy, but without the effects of rotation. [Pg.119]

While the constitutive equations formulated in strain space in Section 5.2.1 follow most naturally from the qualitative observations about inelastic behavior made there, the equations are usually cast in terms of stress, rather than strain. Since (5.3) is invertible in e, there exists a function... [Pg.126]

If a motion is specified with satisfies the continuity condition, the velocity, strain, and density at each material particle are determined at each time t throughout the motion. Given the constitutive functions (e, k), c(e, k), b( , k), and a s,k) with suitable initial conditions, the constitutive equations (5.1), (5.4), and (5.11) may be integrated along the strain history of each material particle to determine its stress history. If the density, velocity, and stress histories are substituted into (5.32), the history of the body force at each particle may be calculated, which is required to sustain the motion. Any such motion is termed an admissible motion, although all admissible motions may not be attainable in practice. [Pg.131]


See other pages where Stress constitutive equations is mentioned: [Pg.21]    [Pg.79]    [Pg.6730]    [Pg.6732]    [Pg.6744]    [Pg.91]    [Pg.191]    [Pg.79]    [Pg.427]    [Pg.593]    [Pg.21]    [Pg.79]    [Pg.6730]    [Pg.6732]    [Pg.6744]    [Pg.91]    [Pg.191]    [Pg.79]    [Pg.427]    [Pg.593]    [Pg.8]    [Pg.9]    [Pg.9]    [Pg.13]    [Pg.79]    [Pg.112]    [Pg.153]    [Pg.88]    [Pg.630]    [Pg.124]    [Pg.139]   
See also in sourсe #XX -- [ Pg.120 ]

See also in sourсe #XX -- [ Pg.91 ]




SEARCH



Constitutive equations equation)

The Stress Constitutive Equation

The Stress Tensor and Rheological Constitutive Equations

© 2024 chempedia.info