Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Streptavidin derivatives

Biotinylated oligosaccharides are convenient probes of carbohydrate interactions, because the biotin label can be captured or detected using an avidin or streptavidin derivative. For instance, immobilized streptavidin can be used to purify glycoconjugates that have been labeled... [Pg.537]

Figure 23.10 Glycoproteins may be oxidized with sodium periodate to generate aldehyde residues. These may be specifically labeled using a hydrazide-streptavidin derivative through hydrazone bond formation. Subsequent detection may be done using biotinylated enzymes. Figure 23.10 Glycoproteins may be oxidized with sodium periodate to generate aldehyde residues. These may be specifically labeled using a hydrazide-streptavidin derivative through hydrazone bond formation. Subsequent detection may be done using biotinylated enzymes.
Table 1 Useful strept(avidin) derivatives. Streptavidin derivatives are reviewed in [27] and [28], and avidin derivatives are reviewed in [30], Besides the review articles, some specific references are listed. Note that this list does not include chimeric protein complexes formed from strept(avidin) binding of biotinylated protein... Table 1 Useful strept(avidin) derivatives. Streptavidin derivatives are reviewed in [27] and [28], and avidin derivatives are reviewed in [30], Besides the review articles, some specific references are listed. Note that this list does not include chimeric protein complexes formed from strept(avidin) binding of biotinylated protein...
Patterning of enzyme monolayers on a solid surface was carried out by photoactivation of immobilized monolayer of caged -biotin derivatives in selected areas. Specific oriented binding of enzyme-avidin conjugates could be readily made to the photoactivated zones [42]. Oriented immobilization of G-protein-coupled receptors on a solid surface was also made possible on a biotinylated surface by first immobilizing streptavidin, followed by the immobilization of biotinylated G-protein-coupled receptor [43]. [Pg.465]

Another alternative prototype of memory array, consisting of data stored as electrostatic charge or molecular dipole in a two-dimensional network of streptavidin cross-linked by biotinylated porphyrin derivative, was also suggested. Information reading was expected to be carried out using the electric force mode of the atomic force microscope [70]. [Pg.469]

Also recently, Liao and collaborators [89] proposed a homogeneous noncompetitive assay of a protein in biological samples based on FRET by using its tryptophan residues as intrinsic donors and its specific fluorescent ligand as the FRET acceptor, which was defined as an analytical FRET probe. To evaluate this method, a naphthylamine derivative, namely /V-biotinyl-/V -(l -naphthylj-ethylene-diamine (BNEDA) 33 was used as an analytical FRET probe for the homogeneous noncompetitive assay of streptavidin. [Pg.39]

The spectral properties of four major phycobiliproteins used as fluorescent labels can be found in Tables 9.1 and 9.2. The bilin content of these proteins ranges from a low of four prosthetic groups in C-phycocyanin to the 34 groups of B- and R-phycoerythrin. Phycoerythrin derivatives, therefore, can be used to create the most intensely fluorescent probes possible using these proteins. The fluorescent yield of the most luminescent phycobiliprotein molecule is equivalent to about 30 fluoresceins or 100 rhodamine molecules. Streptavidin-phycoerythrin conjugates, for example, have been used to detect as little as 100 biotinylated antibodies bound to receptor proteins per cell (Zola et al., 1990). [Pg.462]

NHS-iminobiotin can be used to label amine-containing molecules with an iminobiotin tag, providing reversible-binding potential with avidin or streptavidin. The NHS ester reacts with proteins and other amine-containing molecules to create stable amide bond derivatives (Figure 11.6). An iminobiotinylated molecule then can be used to target and purify other... [Pg.515]

Figure 27.1 Three common nucleoside triphosphate derivatives that can be incorporated into oligonucleotides by enzymatic means. The first two are biotin derivatives of pyrimidine and purine bases, respectively, that can be added to an existing DNA strand using either polymerase or terminal transferase enzymes. Modification of DNA with these nucleosides results in a probe detectable with labeled avidin or streptavidin conjugates. The third nucleoside triphosphate derivative contains an amine group that can be added to DNA using terminal transferase. The modified oligonucleotide then can be labeled with amine-reactive bioconjugation reagents to create a detectable probe. Figure 27.1 Three common nucleoside triphosphate derivatives that can be incorporated into oligonucleotides by enzymatic means. The first two are biotin derivatives of pyrimidine and purine bases, respectively, that can be added to an existing DNA strand using either polymerase or terminal transferase enzymes. Modification of DNA with these nucleosides results in a probe detectable with labeled avidin or streptavidin conjugates. The third nucleoside triphosphate derivative contains an amine group that can be added to DNA using terminal transferase. The modified oligonucleotide then can be labeled with amine-reactive bioconjugation reagents to create a detectable probe.
Roffman, E., Meromsky, L., Ben-Hur, H., Bayer, E. A., and Wilchek, M. (1986) Selective labeling of functional groups on membrane proteins or glycoproteins using reactive biotin derivatives and 1-streptavidin. Biochem. Biophys. Res. Comm. 136, 80-85. [Pg.43]

The biochemical MS assay performance was studied for various biotin derivatives, such as biotin [m/z 245), N-biotinyl-6-aminocaproic acid hydrazide (m/z 372), biotin-hydrazide (m/z 259), N-biotinyl-L-lysine (m/z 373) and biotin-N-succinimi-dylester m/z 342). These five different bioactive compounds were consecutively injected into the biochemical MS assay. Figure 5.12 shows triplicate injections in the biochemical MS-based system of the different active compounds. Each compound binds to streptavidin, hence the MS responses of peaks of the reporter ligand (fluorescein-biotin, m/z 390) are similar. The use of SIM allows specific components to be selected and monitored, e.g. protonated molecule of the biotin derivatives. In this case, no peaks were observed for biotin-N-succinimidylester (m/z 342), because under the applied conditions fragmentation occurred to m/z 245. In combination with full-scan MS measurements, the molecular mass of active compounds can be determined simultaneously to the biochemical measurement. [Pg.204]


See other pages where Streptavidin derivatives is mentioned: [Pg.822]    [Pg.594]    [Pg.606]    [Pg.75]    [Pg.136]    [Pg.574]    [Pg.586]    [Pg.5]    [Pg.822]    [Pg.594]    [Pg.606]    [Pg.75]    [Pg.136]    [Pg.574]    [Pg.586]    [Pg.5]    [Pg.245]    [Pg.767]    [Pg.39]    [Pg.350]    [Pg.512]    [Pg.270]    [Pg.336]    [Pg.380]    [Pg.506]    [Pg.508]    [Pg.509]    [Pg.510]    [Pg.512]    [Pg.526]    [Pg.545]    [Pg.986]    [Pg.1032]    [Pg.1230]    [Pg.1230]    [Pg.93]    [Pg.24]    [Pg.10]    [Pg.59]    [Pg.291]    [Pg.434]    [Pg.125]    [Pg.394]    [Pg.101]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Streptavidin

© 2024 chempedia.info