Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitriles Strecker synthesis

The most general methods for the syntheses of 1,2-difunctional molecules are based on the oxidation of carbon-carbon multiple bonds (p. 117) and the opening of oxiranes by hetero atoms (p. 123fl.). There exist, however, also a few useful reactions in which an a - and a d -synthon or two r -synthons are combined. The classical polar reaction is the addition of cyanide anion to carbonyl groups, which leads to a-hydroxynitriles (cyanohydrins). It is used, for example, in Strecker s synthesis of amino acids and in the homologization of monosaccharides. The ff-hydroxy group of a nitrile can be easily substituted by various nucleophiles, the nitrile can be solvolyzed or reduced. Therefore a large variety of terminal difunctional molecules with one additional carbon atom can be made. Equally versatile are a-methylsulfinyl ketones (H.G. Hauthal, 1971 T. Durst, 1979 O. DeLucchi, 1991), which are available from acid chlorides or esters and the dimsyl anion. Carbanions of these compounds can also be used for the synthesis of 1,4-dicarbonyl compounds (p. 65f.). [Pg.50]

In a modification of the original method. Read (60) replaced a-amino acids with a-amino nitriles. This reaction is sometimes known as Strecker hydantoin synthesis, the term referring to the reaction employed for the synthesis of the a-amino nitrile from an aldehyde or ketone. The cycli2ation intermediate (18) has been isolated in some cases (61), and is involved in a pH-controUed equiUbrium with the corresponding ureide. [Pg.253]

Scheme 4.19 Asymmetric Strecker-type synthesis of a-amino nitriles. Scheme 4.19 Asymmetric Strecker-type synthesis of a-amino nitriles.
Strecker a-amino nitrile synthesis.1 A new variation of NH3/HCN for the Strecker synthesis uses BzlNH2, KCN, and HO Ac in CH3OH. [Pg.22]

Strecker a-amino nitrile synthesis. This synthesis can be conducted by reaction of ketones and an amine and this reagent for introduction of the CN group (equation... [Pg.87]

Harusawa, S., Hamada, Y, and Shioiri, T., Diethyl phosphorocyanidate (DEPC). A novel reagent for the classical Strecker s a-amino nitrile synthesis. Tetrahedron Ij- tt.. 20, 4663, 1979. [Pg.306]

The classical Strecker-type synthesis involving the addition of cyanide to aldehydes, ammonolysis of the cyanohydrin, and hydrolysis of the nitrile, yields racemates. More reactive than the cyanide anion are the azolactones for aromatic aldehydes or acetamido-malonate anions for Michael additions or alkylations (Scheme 9.3.1). [Pg.481]

Contrary to the general perception, MCR occupies an important position in the development of modern organic chemistry. Indeed, many important named reactions such as the Strecker amino nitrile synthesis (1850) [6], the Hantzsch dihydropyridine synthesis (1882) [7], the Biginelli dihydropyrimidine synthesis (1891) [8], the Mannich reaction (1912) [9], the isocyanide-based Passerini reaction (1921) [10], and the Ugi (1959) reaction [11], among others, are all multicomponent processes. In spite of the significant contribution of MCRs to the state of the art of modern organic chemistry and its demonstrated potential in the synthesis of... [Pg.579]

In the Strecker synthesis an aldehyde is converted to an a ammo acid with one more carbon atom by a two stage procedure m which an a ammo nitrile is an mterme diate The a ammo nitrile is formed by reaction of the aldehyde with ammonia or an ammonium salt and a source of cyanide ion Hydrolysis of the nitrile group to a car boxylic acid function completes the synthesis... [Pg.1121]

Hydroxyl Group. The OH group of cyanohydrins is subject to displacement with other electronegative groups. Cyanohydrins react with ammonia to yield amino nitriles. This is a step in the Strecker synthesis of amino acids. A one-step synthesis of a-amino acids involves treatment of cyanohydrins with ammonia and ammonium carbonate under pressure. Thus acetone cyanohydrin, when heated at 160°C with ammonia and ammonium carbonate for 6 h, gives a-aminoisobutyric acid [62-57-7] in 86% yield (7). Primary and secondary amines can also be used to displace the hydroxyl group to obtain A/-substituted and Ai,A/-disubstituted a-amino nitriles. The Strecker synthesis can also be appHed to aromatic ketones. Similarly, hydrazine reacts with two molecules of cyanohydrin to give the disubstituted hydrazine. [Pg.411]

Strecker synthesis (Section 27.4) Method for preparing amino acids in which the first step is reaction of an aldehyde with ammonia and hydrogen cyanide to give an amino nitrile, which is then hydrolyzed. [Pg.1294]

An a-amino acid 3 can be prepared by treating aldehyde 1 with ammonia and hydrogen cyanide and a subsequent hydrolysis of the intermediate a-amino nitrile 2. This so-called Strecker synthesis - is a special case of the Mannich reaction-, it has found application for the synthesis of a-amino acids on an industrial scale. The reaction also works with ketones to yield a, a -disubstituted a-amino acids. [Pg.270]

The asymmetric Strecker synthesis of a-amino nitriles from Schiff bases of a-methylbenzyl-aminc is improved by the use of trimethylsilyl cyanide, instead of hydrogen cyanide and by promotion of the transformation with a Lewis acid, preferably zinc chloride43. Thus, from the butyraldimine 2, the amino nitrile is synthesized with a yield of 98.5% and an ee of 68.5%. [Pg.788]

In asymmetric Strecker synthesis ( + )-(45,55 )-5-amino-2,2-dimethyl-4-phenyl-l,3-dioxane has been introduced as an alternative chiral auxiliary47. The compound is readily accessible from (lS,25)-2-amino-l-phcnyl-l,3-propancdioI, an intermediate in the industrial production of chloramphenicol, by acctalization with acetone. This chiral amine reacts smoothly with methyl ketones of the arylalkyl47 or alkyl series48 and sodium cyanide, after addition of acetic acid, to afford a-methyl-a-amino nitriles in high yield and in diastereomerically pure form. [Pg.789]

The method is very useful for the synthesis of physiologically interesting a-mcthylamino acids, e.g., methyl dopa from the 3,4-dimethoxybenzyl derivative. The excellent stereoselection achieved in the process, however, is caused by the preferential crystallization of one pure diastereomerfrom the equilibrium mixture formed in the reversible Strecker reaction. Thus, the pure diastcrcomers with benzyl substituents, dissolved in chloroform or acetonitrile, give equilibrium mixtures of both diastereomers in a ratio of about 7 347. This effect has also been found for other s-methylamino nitriles of quite different structure49. If the amino nitrile (R1 = Bn) is synthesized in acetonitrile solution, the diastereomers do not crystallize while immediate hydrolysis indicates a ratio of the diastereomeric amino nitriles (S)I(R) of 86 1447. [Pg.790]

The synthesis of a-amino acids by reaction of aldehydes or ketones with ammonia and hydrogen cyanide followed by hydrolysis of the resulting a-aminonitrile is called the Strecker synthesis. Enzymatic hydrolysis has been applied to the kinetic resolution of intermediate a-aminonitriles [90,91]. The hydrolysis of (rac)-phenylglycine nitrile... [Pg.145]

A particularly useful variation of this reaction uses cyanide rather than HCN. a-Amino nitriles can be prepared in one step by the treatment of an aldehyde or ketone with NaCN and NH4CI. This is called the Strecker synthesisand it is a special case of the Mannich reaction (16-15). Since the CN is easily hydrolyzed to the acid, this is a convenient method for the preparation of a-amino acids. The reaction has also been carried out with NH3-I-HCN and with NH4CN. Salts of primary and secondary amines can be used instead of NH to obtain N-substituted and N,N-disubstituted a-amino nitriles. Unlike 16-51, the Strecker synthesis is useful for aromatic as well as aliphatic ketones. As in 16-51, the Me3SiCN method has been used 64 is converted to the product with ammonia or an amine. ... [Pg.1240]

Strecker reactions provide one of the most efficient methods for the synthesis of a-amino nitriles, which are useful intermediates in the synthesis of amino acids and nitrogen-containing heterocycles. Although classical Strecker reactions have some limitations, use of trimethylsilyl cyanide (TMSCN) as a cyano anion source provides promising and safer routes to these compounds.133-351 Consequently, we focused our attention on tributyltin cyanide (Bu3SnCN), because Bu3SnCN is stable in water and is also a potential cyano anion source. Indeed, the Strecker-type reactions of aldehydes, amines, and Bu3SnCN proceeded smoothly in water (Eq. 9).1361 It should be noted that no surfactants are required in this reaction. Furthermore, Complete recovery of the toxic tin compounds is also possible in the form of bis(tributyltin) oxide after the reaction is over. Since conversion of bis(tributyltin) oxide to tributyltin cyanide is known in the literature, this procedure provides a solution to the problem associated with toxicity of tin compounds. [Pg.11]

Remarks on Sections 6 and 7.-—The method here described for the synthesis of cyanohydrins—treatment of the bisulphite compound of the aldehyde with potassium cyanide—cannot be used in all cases. Concentrated solutions of hydrocyanic acid or anhydrous hydrogen cyanide are often used. The general method for the synthesis of a-amino-acids, the nitriles of which are formed by the union of ammonium cyanide with aldehydes or ketones (Strecker), is to be contrasted with that for the synthesis of a-hydroxy acids. For additional amino-acid syntheses see Chap. VII. 2, p. 276. [Pg.230]

The ease of the Strecker synthesis from aldehydes makes a-aminonitriles an attractive and important route to a-amino acids. Fortunately, the microbial world offers a number of enzymes for carrying out the necessary conversions, some of them highly stereoselective. Nitrilases catalyze a direct conversion of nitrile into carboxylic acid (Equation (11)), whereas nitrile hydratases catalyze formation of the amide, which can then be hydrolyzed to the carboxylic acid in a second step (Equation (12)). In a recent survey, with a view to bioremediation and synthesis, Brady et al have surveyed the ability of a wide range of bacteria and yeasts to grow on diverse nitriles and amides as sole nitrogen source. This provides a rich source of information on enzymes for future application. [Pg.86]

In summary, (R)-phenylglycine amide 1 is an excellent chiral auxiliary in the asymmetric Strecker reaction with pivaldehyde or 3,4-dimethoxyphenylacetone. Nearly diastereomerically pure amino nitriles can be obtained via a crystallization-induced asymmetric transformation in water or water/methanol. This practical one-pot asymmetric Strecker synthesis of (R,S)-3 in water leads to the straightforward synthesis of (S)-tert-leucine 7. Because (S)-phenylglycine amide is also available, this can be used if the other enantiomer of a target molecule is required. More examples are currently under investigation to extend the scope of this procedure. ... [Pg.186]

First published in 1850 [1], the Strecker reaction (Scheme 21) is a convenient tool for the synthesis of a-amino acids. Originally it was reported as a condensation of an aldehyde, ammonia and a cyanide source in buffered aqueous medium to form an a-amino nitrile, which is then hydrolysed to an a-amino acid [47, 48]. [Pg.177]

The synthetic strategy of preparing pyrazines by condensation of 2-keto aldoximes with a-amino nitriles is well represented by Taylor s pteridine synthesis, in which a variety of 2-amino-3-cyanopyrazine 1-oxides have been prepared by using aminomalononitrile <2002TL6747> as the amino nitriles. In the same fashion, some other a-amino nitriles, which are often the Strecker synthesis products, are converted into 2-aminopyrazine 1-oxides 160 (Scheme 44). The condensations are realized by treatment with iV-methylmorpholine <1993JOC7542>, and... [Pg.309]

Figure 2.5 Treating an aldehyde with ammonia and hydrogen cyanide produces an df-ammo nitrile. By hydrolysis of the nitrile group an df-amino acid is produced. This synthesis is called the Strecker synthesis. Figure 2.5 Treating an aldehyde with ammonia and hydrogen cyanide produces an df-ammo nitrile. By hydrolysis of the nitrile group an df-amino acid is produced. This synthesis is called the Strecker synthesis.
The Strecker synthesis is the one-carbon homologation of an aldehyde to the a-amino nitrile. Robert Cunico of Northern Illinois University in DeKalb reports (Tetrahedron Lett. 44 8025, 2003) a modified Strecker leading directly to the amide of the a-amino acid. [Pg.18]

For a review of a-amino nitriles, see Shafran Bakulev Mokrushin Russ. Chem. Rev. 1989, 58. 148-162. ""For a review of asymmetric Strecker syntheses, see Williams Synthesis of Optically Active a-Amino Acids Pergamon Elmsford, NY, 1989, pp, 208-229. [Pg.965]


See other pages where Nitriles Strecker synthesis is mentioned: [Pg.710]    [Pg.710]    [Pg.271]    [Pg.301]    [Pg.257]    [Pg.22]    [Pg.271]    [Pg.972]    [Pg.782]    [Pg.785]    [Pg.122]    [Pg.395]    [Pg.142]    [Pg.304]    [Pg.192]    [Pg.965]   
See also in sourсe #XX -- [ Pg.710 ]




SEARCH



Nitriles synthesis

Strecker

Strecker synthesis

© 2024 chempedia.info