Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Storage theoretical

Rosi, M., Sgamelotti, A., Francheschi, F., and Floriani, C., Use of norbomadiene in solar energy storage theoretical study of a copper(l) photosensitizer for the norbornadiene-quadricyclane transformation, fnorg. Chem., 38,1520-1522,1999. [Pg.368]

It was reahzed quite some decades ago that the amount of information accumulated by chemists can, in the long run, be made accessible to the scientific community only in electronic form in other words, it has to be stored in databases. This new field, which deals with the storage, the manipulation, and the processing of chemical information, was emerging without a proper name. In most cases, the scientists active in the field said they were working in "Chemical Information . However, as this term did not make a distinction between librarianship and the development of computer methods, some scientists said they were working in "Computer Chemistry to stress the importance they attributed to the use of the computer for processing chemical information. However, the latter term could easily be confused with Computational Chemistry, which is perceived by others to be more limited to theoretical quantum mechanical calculations. [Pg.4]

PDB files were designed for storage of crystal structures and related experimental information on biological macromolecules, primarily proteins, nucleic acids, and their complexes. Over the years the PDB file format was extended to handle results from other experimental (NM.R, cryoelectron microscopy) and theoretical methods... [Pg.112]

Figure 3.16a shows the storage and loss components of the compliance of crystalline polytetrafluoroethylene at 22.6°C. While not identical to the theoretical curve based on a single Voigt element, the general features are readily recognizable. Note that the range of frequencies over which the feature in Fig. 3.16a develops is much narrower than suggested by the scale in Fig. 3.13. This is because the sample under investigation is crystalline. For amorphous polymers, the observed loss peaks are actually broader than predicted by a... Figure 3.16a shows the storage and loss components of the compliance of crystalline polytetrafluoroethylene at 22.6°C. While not identical to the theoretical curve based on a single Voigt element, the general features are readily recognizable. Note that the range of frequencies over which the feature in Fig. 3.16a develops is much narrower than suggested by the scale in Fig. 3.13. This is because the sample under investigation is crystalline. For amorphous polymers, the observed loss peaks are actually broader than predicted by a...
Pyrrole is a colorless, slightly hygroscopic Hquid which, if fresh, emits an odor like that of chloroform. However, it darkens on exposure to air and eventually produces a dark brown resin. It can be preserved by excluding air from the storage container, preferably by displacement with ammonia to prevent acid-catalyzed polymerization. A review of the physical and theoretical aspects of pyrrole is found in Reference 4. Some physical properties of pyrrole are Hsted in Table 1. [Pg.354]

Several alternative methods have been considered in order to increase the energy density of natural gas and facilitate its use as a road vehicle fuel. It can be dissolved in organic solvents, contained in a molecular cage (clathrate), and it may be adsorbed in a porous medium. The use of solvents has been tested experimentally but there has been little improvement so far over the methane density obtained by simple compression. Clathrates of methane and water, (methane hydrates) have been widely investigated but seem to offer little advantage over ANG [4]. Theoretical comparison of these storage techniques has been made by Dignam [5]. In practical terms, ANG has shown the most promise so far of these three alternatives to CNG and LNG. [Pg.274]

The issue of the theoretical maximum storage capacity has been the subject of much debate. Parkyns and Quinn [20] concluded that for active carbons the maximum uptake at 3.5 MPa and 298 K would be 237 V/V. This was estimated from a large number of experimental methane isotherms measured on different carbons, and the relationship of these isotherms to the micropore volume of the corresponding adsorbent. Based on Lennard-Jones parameters [21], Dignum [5] calculated the maximum methane density in a pore at 298 K to be 270 mg/ml. Thus an adsorbent with 0.50 ml of micropore per ml could potentially adsorb 135 mg methane per ml, equivalent to about 205 V/ V, while a microporc volume of 0.60 mEml might store 243 V/V. Using sophisticated parallel slit... [Pg.281]

Thus, while models may suggest optimal pore spuctures to maximize methane storage, they give no indication or suggestion as to how such a material might be produced. On the other hand, simple measurement of methane uptake from variously prepared adsorbents is not sufficient to elucidate the difference in the pore structure of adsorbents. Sosin and Quinn s method of determining a PSD directly from the supercritical methane isotherm provides an important and valuable link between theoretical models and the practical production of carbon adsorbents... [Pg.284]

After column packing, each column is tested for theoretical plate count, peak symmetry, resolution, pore volume, and back pressure. If one of these tests fails the column is removed from the production cycle. If a PSS SEC column is kept in storage for a longer time, it is retested for theoretical plate count, peak symmetry, resolution, pore volume, and back pressure prior to shipping to the customer to prove up-to-date column performance. [Pg.289]

An alternative method of studying the molecular motions of a polymeric chain is to measure the complex permitivity of the sample, mounted as dielectric of a capacitor and subjected to a sinusoidal voltage, which produces polarization of the sample macromolecules. The storage and loss factor of the complex permitivity are related to the dipolar orientations and the corresponding motional processes. The application of the dielectric thermal analysis (DETA) is obviously limited to macromolecules possessing heteroatomic dipoles but, on the other hand, it allows a range of frequency measurement much wider than DMTA and its theoretical foundations are better established. [Pg.393]

Studies of these kinds are of particular importance to all theoretical information storage and retrieval systems incorporating some form of geometry modification, such as those modeled by certain neural networks. [Pg.274]

The chloride is mixed on a laboratory scale with xs Ca (powder or chips) in an Fe tube in a high-T glass distillation vessel. The Fe tube protects the glass from corrosive attack by the alkali-metal vapors. The vessel is inclined and evacuated while slowly heating to 700-800°C. The liberated Rb or Cs distills onto the cooler upper walls of the vessel and runs into integral glass ampules, which are sealed under vacuum for storage. Further purification is achieved by repeated. vacuum distillation at 300°C. Yields arc theoretical. [Pg.348]

The work described in this paper is an illustration of the potential to be derived from the availability of supercomputers for research in chemistry. The domain of application is the area of new materials which are expected to play a critical role in the future development of molecular electronic and optical devices for information storage and communication. Theoretical simulations of the type presented here lead to detailed understanding of the electronic structure and properties of these systems, information which at times is hard to extract from experimental data or from more approximate theoretical methods. It is clear that the methods of quantum chemistry have reached a point where they constitute tools of semi-quantitative accuracy and have predictive value. Further developments for quantitative accuracy are needed. They involve the application of methods describing electron correlation effects to large molecular systems. The need for supercomputer power to achieve this goal is even more acute. [Pg.160]


See other pages where Storage theoretical is mentioned: [Pg.64]    [Pg.64]    [Pg.1346]    [Pg.150]    [Pg.459]    [Pg.7]    [Pg.84]    [Pg.11]    [Pg.84]    [Pg.400]    [Pg.57]    [Pg.323]    [Pg.122]    [Pg.685]    [Pg.312]    [Pg.369]    [Pg.177]    [Pg.316]    [Pg.179]    [Pg.3]    [Pg.280]    [Pg.315]    [Pg.119]    [Pg.203]    [Pg.206]    [Pg.308]    [Pg.362]    [Pg.6]    [Pg.21]    [Pg.248]    [Pg.46]    [Pg.324]    [Pg.360]    [Pg.361]    [Pg.361]    [Pg.362]    [Pg.71]   
See also in sourсe #XX -- [ Pg.207 ]




SEARCH



Theoretical Background of Transient Techniques Used in Oxygen Storage and Release Kinetic Studies

© 2024 chempedia.info