Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stoichiometric acylations

The classical Friedel-Crafts acylation reactions are usually carried out in the presence of a stoichiometric amount of Lewis acid catalyst and are very familiar today to all chemical research workers. [Pg.9]

In this chapter, only special examples of stoichiometric acylation will be commented. For example, reactions showing extraordinary level of regiose-lectivity promoted by proximity or metal template effects are described. Moreover, examples of efficient use of carboxylic acids and esters as acylating agents under soft experimental conditions in combination with ecocompatible solvents are stressed as new and practicable synthetic methods. Studies on the highly efficient multistep s)mthesis of polyfunctional compounds via bis-acylation and alkylation-acylation processes are commented upon, and some mechanistic details are also shown. [Pg.9]

compound 1, easily synthesized from proline and 2,6-dimeth-oxytetrahydrofuran by the modified Clauson-Kaas procedure, is converted into the mixed anhydrides 2 by reaction with different acyl chlorides and N-methylmorpholine. Treatment of compounds 2 with a stoichiometric amount of aluminum chloride in dry diethyl ether gives the C-2 derivatives 3 in 65%-81% yield via intramolecular acyl transfer controlled by the proximity effect. [Pg.10]

Trace amounts of 3-acyl derivatives are also produced by conventional intermolecular acylation from another molecule of mixed anhydride 2. [Pg.10]

Regioselective substitution on indole is one of the most important goals in heterocyclic chemistry owing to the great importance of indoles in the preparation of biologically active products. The 2- and 3-positions of the ring are the normal sites of attack in the electrophilic substitution, including acylation because of their much more nucleophilic activity.  [Pg.10]


In addition, Oriyama was the first to provide a practical protocol for the ASD of mei( -l,2-diols [179-182], Thus, employing just 0.5 mol% of (5)-proline-derived chiral diamine 56 in conjunction with benzoyl chloride as the stoichiometric acyl donor in the presence of EtjN, asymmetric benzoylation of a variety of me o-diols could be achieved with good to excellent enantioselectivities (66-96% ee) and 80% yields (Scheme 24) [179-182],... [Pg.264]

The whole argument is organized in four sections stoichiometric acylations, catalytic homogeneous acylations, catalytic heterogeneous acylations, and phenol acylations. It is structured according to the role played by the catalyst in the activation of reagents as well as in the different modes of regioselectivity encountered in the acylation of arenes, aromatic ethers, and phenols. [Pg.5]

Liquid crystal polyesters are made by a different route. Because they are phenoHc esters, they cannot be made by direct ester exchange between a diphenol and a lower dialkyl ester due to unfavorable reactivities. The usual method is the so-called reverse ester exchange or acidolysis reaction (96) where the phenoHc hydroxyl groups are acylated with a lower aHphatic acid anhydride, eg, acetic or propionic anhydride, and the acetate or propionate ester is heated with an aromatic dicarboxyHc acid, sometimes in the presence of a catalyst. The phenoHc polyester forms readily as the volatile lower acid distills from the reaction mixture. Many Hquid crystal polymers are derived formally from hydroxyacids (97,98) and thein acetates readily undergo self-condensation in the melt, stoichiometric balance being automatically obtained. [Pg.295]

This procedure is restricted mainly to aminodicarboxyhc acids or diaminocarboxyhc acids. In the case of neutral amino acids, the amino group or carboxyl group must be protected, eg, by A/-acylation, esterification, or amidation. This protection of the racemic amino acid and deprotection of the separated enantiomers add stages to the overall process. Furthermore, this procedure requires a stoichiometric quantity of the resolving agent, which is then difficult to recover efficiendy. Practical examples of resolution by this method have been pubUshed (50,51). [Pg.278]

Write a balanced, stoichiometric reaction for the synthesis of phosphatidylethanolamine from glycerol, fatty acyl-CoA, and ethanolamine. Make an estimate of the AG° for the overall process. [Pg.850]

Friedel-Crafts acylation reactions usually involve the interaction of an aromatic compound with an acyl halide or anhydride in the presence of a catalyst, to form a carbon-carbon bond [74, 75]. As the product of an acylation reaction is less reactive than its starting material, monoacylation usually occurs. The catalyst in the reaction is not a true catalyst, as it is often (but not always) required in stoichiometric quantities. For Friedel-Crafts acylation reactions in chloroaluminate(III) ionic liquids or molten salts, the ketone product of an acylation reaction forms a strong complex with the ionic liquid, and separation of the product from the ionic liquid can be extremely difficult. The products are usually isolated by quenching the ionic liquid in water. Current research is moving towards finding genuine catalysts for this reaction, some of which are described in this section. [Pg.203]

Acidic chloroaluminate ionic liquids have already been described as both solvents and catalysts for reactions conventionally catalyzed by AICI3, such as catalytic Friedel-Crafts alkylation [35] or stoichiometric Friedel-Crafts acylation [36], in Section 5.1. In a very similar manner, Lewis-acidic transition metal complexes can form complex anions by reaction with organic halide salts. Seddon and co-workers, for example, patented a Friedel-Crafts acylation process based on an acidic chloro-ferrate ionic liquid catalyst [37]. [Pg.225]

Schemes are available, however, that start from the free carboxylic acid, plus an activator . Dicyclohexylcarbodiimide, DCC, has been extensively employed as a promoter in esterification reactions, and in protein chemistry for peptide bond formation [187]. Although the reagent is toxic, and a stoichiometric concentration or more is necessary, this procedure is very useful, especially when a new derivative is targeted. The reaction usually proceeds at room temperature, is not subject to steric hindrance, and the conditions are mild, so that several types of functional groups can be employed, including acid-sensitive unsaturated acyl groups. In combination with 4-pyrrolidinonepyridine, this reagent has been employed for the preparation of long-chain fatty esters of cellulose from carboxylic acids, as depicted in Fig. 5 [166,185,188] ... Schemes are available, however, that start from the free carboxylic acid, plus an activator . Dicyclohexylcarbodiimide, DCC, has been extensively employed as a promoter in esterification reactions, and in protein chemistry for peptide bond formation [187]. Although the reagent is toxic, and a stoichiometric concentration or more is necessary, this procedure is very useful, especially when a new derivative is targeted. The reaction usually proceeds at room temperature, is not subject to steric hindrance, and the conditions are mild, so that several types of functional groups can be employed, including acid-sensitive unsaturated acyl groups. In combination with 4-pyrrolidinonepyridine, this reagent has been employed for the preparation of long-chain fatty esters of cellulose from carboxylic acids, as depicted in Fig. 5 [166,185,188] ...
Other than energy considerations, on which there is little comparative data, the most important green role for photochemistry is in improving atom economy. Although only a preliminary research result, an excellent example of this is the avoidance of the need for stoichiometric amounts of Lewis acid catalysts in the synthesis of some acylated aromatic compounds. Benzoquinone can be reacted with an aldehyde under a sunlamp to yield an acylhydroquinone in up to 88% yield. The alternative procedure would involve reaction of an acyl chloride with hydroquinone and a... [Pg.219]

In 2007, Womack et al. published the conversion of 2-aUcylcinnamyldehydes to 2-aLkylindanones via a catalytic intramolecular Friedel-Crafts reaction. In the presence of 5-10 mol% FeCls different in situ generated ( )-2-alkylcinnamaldehydes-derived dimethyl acetals cyclized to l-methoxy-2-aIkyl-7//-indenes in good to high yields (Scheme 6) [22]. The transformation corresponds to a formal intramolecular Friedel-Crafts acylation which is achieved with catalytic quantities of Lewis acid. This result is in strong contrast to traditional Friedel-Crafts acylations which require stoichiometric amounts of Lewis acid. [Pg.6]

Since amines react more readily than alcohols in noncatalyzed reactions with anhydrides, the reaction is more difficult and initially required stoichiometric catalyst loadings [107], but could be performed in a catalytic sense with an O-acylated azlactone as acylating agent, which does not react with a benzylic amine at —50°C, but is capable of acylating the catalyst [108, 109]. Depending on the buUdness of the substrate, selectivities ranged from S = 11 to 27 (s = [ enantiomer l]/[ enantiomer 2])-... [Pg.168]

Previous syntheses An example of this point can be recognized by examination of one known synthesis of thienobenzazepines (Scheme 6.1). This synthetic route involves a key palladinm-catalyzed cross-conpling of stannyl intermediate 3, prepared by method of Gronowitz et al., with 2-nitrobenzyl bromide. Acetal deprotection and reductive cyclization afforded the desired thienobenzazepine tricycle 4. In support of structure activity relationship studies, this intermediate was conveniently acylated with varions acyl chlorides to yield several biologically active componnds of structure type 5. While this synthetic approach does access intermediate 4 in relatively few synthetic transformations for stractnre activity relationship studies, this route is seemingly nnattractive for preparative scale requiring stoichiometric amounts of potentially toxic metals that are generally difficult to remove and present costly purification problems at the end of the synthesis. [Pg.64]

Sc(OTf)3 catalyzes Friedel-Crafts acylation reactions effectively (Scheme 12).52 While more than stoichiometric amounts of a Lewis acid such as A1C13 or BF3-OEt2 are needed because of consumption of the Lewis acid by coordination to products, a catalyic amount of Sc(OTf)3 is enough to complete the reactions. [Pg.404]

In such a sequence the first complex incorporating the elements H, C, and O is a metal formyl species in Section II,A we describe the preparation and properties of such complexes. In Section II,B, stoichiometric reductions of both metal carbonyl and metal acyl species are presented and in Section II,C, homogeneous CO/H2 conversion catalysts are discussed. [Pg.67]

The CO reductions generally could likely proceed through formyl intermediates, probably at a multinuclear site (420) hydride migration to a coordinated CO [e.g., as in the hypothetical scheme outlined in Eq. (72)] has not yet been observed, although metal formyl complexes have been synthesized via other methods (422-425). A ir-bonded formyl also seems plausible (426), since 7r-bonded acyl groups have been demonstrated (427). A stoichiometric hydrogen reduction of CO to methanol under mild conditions via a bis(pentamethylcyclopentadienyl)zirconium complex is considered to go through a formyl intermediate (428, 429) ... [Pg.374]

Another possible termination step that has been utilized for the cycloetherification of alkynols involves CO insertion and esterification of the resulting acyl metal with an exogenous alcohol. This process has typically employed MeOH as solvent and a stoichiometric oxidant since the catalyst is turned over in a reduced form. Following this mechanistic motif, a variety of alkynols have been cyclized under Pd(n) catalysis to five- and six-membered oxacycles with incorporation of methyl esters into the products.294,327-329 For the formation of five-membered ring products, this reaction has been carried out in both exo- and endo-mode to provide 1- and 2-substituted... [Pg.675]


See other pages where Stoichiometric acylations is mentioned: [Pg.247]    [Pg.346]    [Pg.307]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.247]    [Pg.346]    [Pg.307]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.136]    [Pg.283]    [Pg.620]    [Pg.105]    [Pg.62]    [Pg.102]    [Pg.171]    [Pg.425]    [Pg.327]    [Pg.47]    [Pg.75]    [Pg.69]    [Pg.59]    [Pg.272]   


SEARCH



© 2024 chempedia.info