Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stirred-tank reactors selectivity

Specific reactor characteristics depend on the particular use of the reactor as a laboratory, pilot plant, or industrial unit. AH reactors have in common selected characteristics of four basic reactor types the weH-stirred batch reactor, the semibatch reactor, the continuous-flow stirred-tank reactor, and the tubular reactor (Fig. 1). A reactor may be represented by or modeled after one or a combination of these. SuitabHity of a model depends on the extent to which the impacts of the reactions, and thermal and transport processes, are predicted for conditions outside of the database used in developing the model (1-4). [Pg.504]

Continuous-Flow Stirred-Tank Reactor. In a continuous-flow stirred-tank reactor (CSTR), reactants and products are continuously added and withdrawn. In practice, mechanical or hydrauHc agitation is required to achieve uniform composition and temperature, a choice strongly influenced by process considerations, ie, multiple specialty product requirements and mechanical seal pressure limitations. The CSTR is the idealized opposite of the weU-stirred batch and tubular plug-flow reactors. Analysis of selected combinations of these reactor types can be useful in quantitatively evaluating more complex gas-, Hquid-, and soHd-flow behaviors. [Pg.505]

Continuous-flow stirred-tank reactors ia series are simpler and easier to design for isothermal operation than are tubular reactors. Reactions with narrow operating temperature ranges or those requiring close control of reactant concentrations for optimum selectivity benefit from series arrangements. [Pg.505]

There are a variety of ways of accomplishing a particular unit operation. Alternative types of process equipment have different inherently safer characteristics such as inventory, operating conditions, operating techniques, mechanical complexity, and forgiveness (i.e., the process/unit operation is inclined to move itself toward a safe region, rather than unsafe). For example, to complete a reaction step, the designer could select a continuous stirred tank reactor (CSTR), a small tubular reactor, or a distillation tower to process the reaction. [Pg.67]

In this short initial communication we wish to describe a general purpose continuous-flow stirred-tank reactor (CSTR) system which incorporates a digital computer for supervisory control purposes and which has been constructed for use with radical and other polymerization processes. The performance of the system has been tested by attempting to control the MWD of the product from free-radically initiated solution polymerizations of methyl methacrylate (MMA) using oscillatory feed-forward control strategies for the reagent feeds. This reaction has been selected for study because of the ease of experimentation which it affords and because the theoretical aspects of the control of MWD in radical polymerizations has attracted much attention in the scientific literature. [Pg.253]

There are two important types of ideal, continuous-flow reactors the piston flow reactor or PFR, and the continuous-flow stirred tank reactor or CSTR. They behave very diflerently with respect to conversion and selectivity. The piston flow reactor behaves exactly like a batch reactor. It is usually visualized as a long tube as illustrated in Figure 1.3. Suppose a small clump of material enters the reactor at time t = 0 and flows from the inlet to the outlet. We suppose that there is no mixing between this particular clump and other clumps that entered at different times. The clump stays together and ages and reacts as it flows down the tube. After it has been in the piston flow reactor for t seconds, the clump will have the same composition as if it had been in a batch reactor for t seconds. The composition of a batch reactor varies with time. The composition of a small clump flowing through a piston flow reactor varies with time in the same way. It also varies with position down the tube. The relationship between time and position is... [Pg.17]

The main part of the report describes the results of systematic investigations into the hydrodynamic stress on particles in stirred tanks, reactors with dominating boundary-layer flow, shake flasks, viscosimeters, bubble columns and gas-operated loop reactors. These results for model and biological particle systems permit fundamental conclusions on particle stress and the dimensions and selection of suitable bioreactors according to the criterion of particle stress. [Pg.35]

Such improvements in conversion were reported for the oxidation of ethanol by hydrogen peroxide to acetic acid. This is a well-studied reaction, carried out in a continuous stirred-tank reactor (CSTR). Near-complete conversion (> 99%) at near-complete selectivity (> 99%) was found in a micro-reaction system [150]. Processing in a CSTR resulted in 30-95% conversion at > 99% selectivity. [Pg.67]

If the process is carried out in a stirred batch reactor (SBR) or in a plug-flow reactor (PFR) the final product will always be the mixture of both products, i.e. the selectivity will be less than one. Contrary to this, the selectivity in a continuous stirred-tank reactor (CSTR) can approach one. A selectivity equal to one, however, can only be achieved in an infinite time. In order to reach a high selectivity the mean residence time must be very long, and, consequently, the productivity of the reactor will be very low. A compromise must be made between selectivity and productivity. This is always a choice based upon economics. [Pg.385]

In a typical test 750 mg of catalyst was added to a continuous stirred tank reactor containing the nitrate ions in 1 L of phosphate buffer solution. This suspension contained 85% H3PO4 (331 g), NaNOs (198 g), NaOH (84g), and Ge02 dissolved in water and was stirred under a H2 flow of 150 L/h. The amonnt of hyam formed and selectivity after 90 min at 30°C were measured by titration [2-3]. Catalysts A and C were also chosen for stndying the effect of Pd loading and Pt addition. [Pg.94]

Drawing heavily from prior experience in hydrogenation of nitriles (7-10) and of ADN to ACN and/or HMD (11), in particular, we decided to restrict the scope of this investigation to Raney Ni 2400 and Raney Co 2724 catalysts. The hydrogenation reactions were initially carried out in a semi-batch reactor, followed by continuous stirred tank reactor to study the activity, selectivity, and life of the catalyst. [Pg.39]

Selectivity considerations may also dictate the use of stirred tank reactors. They are preferred if undesirable side reactions predominate at high reactant concentrations, and they are also useful when one desires to skip certain concentration or temperature ranges where byproduct formation may be excessive. [Pg.251]

Figure 4.15 Selective adsorption synthesis of a-cyclodextrin from starch applying a hatch process using a sequence of stirred-tank reactor, heat exchanger modules and adsorption step... Figure 4.15 Selective adsorption synthesis of a-cyclodextrin from starch applying a hatch process using a sequence of stirred-tank reactor, heat exchanger modules and adsorption step...
Many correlations allow estimation of the gas-liquid volumetric mass transfer coefficient kLa in mechanically stirred tank reactors. The following intends not to provide a comprehensive review but rather a critical evaluation of selected correlations adapted to hydrogenations [Eqs. (40) to (43)] [25, 51-53]. [Pg.1539]

Many wastewater flows in industry can not be treated by standard aerobic or anaerobic treatment methods due to the presence of relatively low concentration of toxic pollutants. Ozone can be used as a pretreatment step for the selective oxidation of these toxic pollutants. Due to the high costs of ozone it is important to minimise the loss of ozone due to reaction of ozone with non-toxic easily biodegradable compounds, ozone decay and discharge of ozone with the effluent from the ozone reactor. By means of a mathematical model, set up for a plug flow reactor and a continuos flow stirred tank reactor, it is possible to calculate more quantitatively the efficiency of the ozone use, independent of reaction kinetics, mass transfer rates of ozone and reactor type. The model predicts that the oxidation process is most efficiently realised by application of a plug flow reactor instead of a continuous flow stirred tank reactor. [Pg.273]

P. Albertos and M. Perez Polo. Selected Topics in Dynamics and Control of Chemical and Biochemical Processes, chapter Nonisothermal stirred-tank reactor with irreversible exothermic reaction A B. 1.Modelling and local control. LNCIS. Springer-Verlag, 2005 (in this volume). [Pg.273]

Reductive alkylation is an efficient method to synthesize secondary amines from primary amines. The aim of this study is to optimize sulfur-promoted platinum catalysts for the reductive alkylation of p-aminodiphenylamine (ADPA) with methyl isobutyl ketone (MIBK) to improve the productivity of N-(l,3-dimethylbutyl)-N-phenyl-p-phenylenediamine (6-PPD). In this study, we focus on Pt loading, the amount of sulfur, and the pH as the variables. The reaction was conducted in the liquid phase under kinetically limited conditions in a continuously stirred tank reactor at a constant hydrogen pressure. Use of the two-factorial design minimized the number of experiments needed to arrive at the optimal solution. The activity and selectivity of the reaction was followed using the hydrogen-uptake and chromatographic analysis of products. The most optimal catalyst was identified to be l%Pt-0.1%S/C prepared at a pH of 6. [Pg.481]

When the kinetic model has been established, it is tested against data from selected non-reaction-specific or global experiments. These experiments provide information on the behavior of certain reaction systems, for instance mixtures of fuel and oxidizer. They usually require a complex chemical kinetic model for interpretation. The process must be studied either under transport-free conditions, such as in plug-flow or stirred-tank reactors, or under conditions in which the transport phenomena can be modeled very precisely, such as under laminar flow conditions. This way computer predictions become influenced primarily by parameters in the chemical kinetic model. [Pg.566]

The process is configured as a series of three stirred-tank reactors with the substrate 3-cyanopyridine continuously fed at 10-20 wt.% concentration and the biocatalyst flowing countercurrently. Enzymatic hydrolysis yields the desired nicotinamide at > 99.3% selectivity, in contrast to the chemical alkaline hydrolysis process which results in about 3-5% nicotinic acid, an undesirable by-product because it causes diarrhea in farm animals (instead of supporting growth for animal feed supplements, see Chapter 6, Section 6.4). Thus, the enzymatic process competes well with the chemical hydrolysis. [Pg.162]

We have demonstrated that vegetable oils and fatty acid esters can be selectively hardened in liquid, near-critical, or supercritical C02 or propane and in mixtures thereof at temperatures between 60 °C and 120 °C and at a total pressure up to 20.0 MPa. Table 14.2 summarizes the results for the selective hydrogenation of vegetable oils in supercritical C02 in comparison with hydrogenation reactions performed in a discontinuous (i.e., batch or semibatch) stirred-tank reactor and in a continuous trickle-bed reactor. [Pg.231]

FIGURE 1 Selected reactor configurations (a) batch, (b) continuous stirred-tank reactor, (c) plug flow reactor, (d) fluidized bed, (e) packed bed, (f) spray column, and (g) bubble column. [Pg.463]

The experimental study of solid catalyzed gaseous reactions can be performed in batch, continuous flow stirred tank, or tubular flow reactors. This involves a stirred tank reactor with a recycle system flowing through a catalyzed bed (Figure 5-31). For integral analysis, a rate equation is selected for testing and the batch reactor performance equation is integrated. An example is the rate on a catalyst mass basis in Equation 5-322. [Pg.376]


See other pages where Stirred-tank reactors selectivity is mentioned: [Pg.379]    [Pg.369]    [Pg.379]    [Pg.369]    [Pg.240]    [Pg.71]    [Pg.351]    [Pg.285]    [Pg.543]    [Pg.259]    [Pg.322]    [Pg.375]    [Pg.68]    [Pg.83]    [Pg.186]    [Pg.231]    [Pg.244]    [Pg.245]    [Pg.257]    [Pg.209]    [Pg.222]    [Pg.185]    [Pg.308]    [Pg.22]    [Pg.73]    [Pg.219]    [Pg.8]    [Pg.786]    [Pg.58]   
See also in sourсe #XX -- [ Pg.179 , Pg.180 ]




SEARCH



Reactor selection

Reactor selectivity

Reactor stirred

Reactors stirred tank reactor

Reactors stirring

Selectivity stirred tank

Stirred tank reactors

Tank reactor

Tank reactor reactors

© 2024 chempedia.info