Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ideal stirred tank reactor

Continuous stirred tank reactor Sometimes called a continuous-flow stirred-tank reactor, ideal mixer, or mixed-flow reactor, all describing reactors with continuous input and output of material. The outlet concentration is assumed to be the same as the concentration at any point in the reactor. [Pg.461]

In fact, it is often possible with stirred-tank reactors to come close to the idealized well-stirred model in practice, providing the fluid phase is not too viscous. Such reactors should be avoided for some types of parallel reaction systems (see Fig. 2.2) and for all systems in which byproduct formation is via series reactions. [Pg.53]

Continuous-Flow Stirred-Tank Reactor. In a continuous-flow stirred-tank reactor (CSTR), reactants and products are continuously added and withdrawn. In practice, mechanical or hydrauHc agitation is required to achieve uniform composition and temperature, a choice strongly influenced by process considerations, ie, multiple specialty product requirements and mechanical seal pressure limitations. The CSTR is the idealized opposite of the weU-stirred batch and tubular plug-flow reactors. Analysis of selected combinations of these reactor types can be useful in quantitatively evaluating more complex gas-, Hquid-, and soHd-flow behaviors. [Pg.505]

The name continuous flow-stirred tank reactor is nicely descriptive of a type of reactor that frequently for both production and fundamental kinetic studies. Unfortunately, this name, abbreviated as CSTR, misses the essence of the idealization completely. The ideality arises from the assumption in the analysis that the reactor is perfectly mixed, and that it is homogeneous. A better name for this model might be continuous perfectly mixed reactor (CPMR). [Pg.383]

Ideal CSTR (continuous stirred tank reactor) behavior is approached when the mean residence time is 5-10 times the length of time needed to achieve homogeneity, which is accomplished with 500-2000 revolutions of a properly designed stirrer. [Pg.15]

There are two important types of ideal, continuous-flow reactors the piston flow reactor or PFR, and the continuous-flow stirred tank reactor or CSTR. They behave very diflerently with respect to conversion and selectivity. The piston flow reactor behaves exactly like a batch reactor. It is usually visualized as a long tube as illustrated in Figure 1.3. Suppose a small clump of material enters the reactor at time t = 0 and flows from the inlet to the outlet. We suppose that there is no mixing between this particular clump and other clumps that entered at different times. The clump stays together and ages and reacts as it flows down the tube. After it has been in the piston flow reactor for t seconds, the clump will have the same composition as if it had been in a batch reactor for t seconds. The composition of a batch reactor varies with time. The composition of a small clump flowing through a piston flow reactor varies with time in the same way. It also varies with position down the tube. The relationship between time and position is... [Pg.17]

We have just described a completely segregated stirred tank reactor. It is one of the ideal flow reactors discussed in Section 1.4. It has an exponential distribution of residence times but a reaction environment that is very different from that within a perfectly mixed stirred tank. [Pg.565]

Establish ideal flow patterns This is usually assumed to be the case for plug-flow and continuously stirred tank reactors, but are all conditions for ideal mixing fulfilled For example, a rule of thumb is that the diameter d of the PFR should be at least lOx the diameter of the catalyst particles to eliminate the influence of the reactor wall. Also, the amount of catalyst should be sufficient to avoid axial gradients. Another rule is that the ratio of the bed length L to the reactor diameter d, i.e. L/d, should be >5-10. Higher values are preferable, but these may cause other problems such as temperature gradients and pressure drops. [Pg.204]

The length (height) and the diameter of tank reactor are close to each other or at least of the same order of magnitude. Tank reactors are usually equipped with a stirrer. In an ideal continuous stirred-tank reactor (CSTR), a feed stream is instantaneously mixed with the reaction mixture before molecules of the stream start to react. In reality, small reactors with vigorous stirring where relatively slow reactions occur behave as if they were ideal CSTRs. The... [Pg.259]

One of the simplest models for convective mass transfer is the stirred tank model, also called the continuously stirred tank reactor (CSTR) or the mixing tank. The model is shown schematically in Figure 2. As shown in the figure, a fluid stream enters a filled vessel that is stirred with an impeller, then exits the vessel through an outlet port. The stirred tank represents an idealization of mixing behavior in convective systems, in which incoming fluid streams are instantly and completely mixed with the system contents. To illustrate this, consider the case in which the inlet stream contains a water-miscible blue dye and the tank is initially filled with pure water. At time zero, the inlet valve is opened, allowing the dye to enter the... [Pg.23]

The ideal tank reactor is one in which stirring is so efficient that the contents are always uniform in composition and temperature throughout. The simple tank reactor may be operated in a variety of modes batch, semibatch, and continuous flow. These modes are illustrated schematically in Figure 8.1. In the simple batch reactor the fluid elements will all have the same composition, but the composition will be time dependent. The stirred tank reactor may also be... [Pg.247]

Continuous flow stirred tank reactors are normally just what the name implies—tanks into which reactants flow and from which a product stream is removed on a continuous basis. CFSTR, CSTR, C-star, and back-mix reactor are only a few of the names applied to the idealized stirred tank flow reactor. We will use the letters CSTR as a shorthand notation in this textbook. The virtues of a stirred tank reactor lie in its simplicity of construction and the relative ease with which it may be controlled. These reactors are used primarily for carrying out liquid phase reactions in the organic chemicals... [Pg.269]

Size Comparisons Between Cascades of Ideal Continuous Stirred Tank Reactors and Plug Flow Reactors. In this section the size requirements for CSTR cascades containing different numbers of identical reactors are compared with that for a plug flow reactor used to effect the same change in composition. [Pg.290]

Combinations of Ideal Continuous Stirred Tank Reactors and Plug Flow Reactors... [Pg.297]

REACTOR NETWORKS COMPOSED OF COMBINATIONS OF IDEAL CONTINUOUS STIRRED TANK REACTORS AND PLUG FLOW REACTORS... [Pg.297]

This section indicates a few useful generalizations that are pertinent in considerations of isothermal series and parallel combinations of ideal plug flow and stirred tank reactors. [Pg.297]

The ideal continuous stirred tank reactor is the easiest type of continuous flow reactor to analyze in design calculations because the temperature and composition of the reactor contents are homogeneous throughout the reactor volume. Consequently, material and energy balances can be written over the entire reactor and the outlet composition and temperature can be taken as representative of the reactor contents. In general the temperatures of the feed and effluent streams will not be equal, and it will be necessary to use both material and energy balances and the temperature-dependent form of the reaction rate expression to determine the conditions at which the reactor operates. [Pg.357]

For a few highly idealized systems, the residence time distribution function can be determined a priori without the need for experimental work. These systems include our two idealized flow reactors—the plug flow reactor and the continuous stirred tank reactor—and the tubular laminar flow reactor. The F(t) and response curves for each of these three types of well-characterized flow patterns will be developed in turn. [Pg.392]

The next case to be considered is the ideal continuous stirred tank reactor. The key to the derivation of the F(t) curve for this type of reactor is the realization that the assumption of perfect mixing implies that upon entry in the reactor an element of volume can instantaneously appear in any portion of the reactor. Therefore its past or its future history cannot be derived from its position. Furthermore, the prob-... [Pg.392]

The responses of a single ideal stirred tank reactor to ideal step and pulse inputs are shown in Figure 11.4. Note that any change in the reactor inlet stream shows up immediately at the reactor outlet in these systems. This fact is used to advantage in the design of automatic control systems for stirred tank reactors. [Pg.394]

Response of ideal continuous stirred tank reactor to step and pulse inputs. [Pg.394]

The response in this case is shown in Figure 11.7 to be the expected step-function response. At the other extreme, a value of 3/JuL equal to infinity corresponds to an ideal stirred tank reactor. [Pg.399]

The Stirred Tanks in Series Model Another model that is frequently used to simulate the behavior of actual reactor networks is a cascade of ideal stirred tank reactors operating in series. The actual reactor is replaced by n identical stirred tank reactors whose total volume is the same as that of the actual reactor. [Pg.405]

The physical situation in a fluidized bed reactor is obviously too complicated to be modeled by an ideal plug flow reactor or an ideal stirred tank reactor although, under certain conditions, either of these ideal models may provide a fair representation of the behavior of a fluidized bed reactor. In other cases, the behavior of the system can be characterized as plug flow modified by longitudinal dispersion, and the unidimensional pseudo homogeneous model (Section 12.7.2.1) can be employed to describe the fluidized bed reactor. As an alternative, a cascade of CSTR s (Section 11.1.3.2) may be used to model the fluidized bed reactor. Unfortunately, none of these models provides an adequate representation of reaction behavior in fluidized beds, particularly when there is appreciable bubble formation within the bed. This situation arises mainly because a knowledge of the residence time distribution of the gas in the bed is insuf-... [Pg.522]

Continuous stirred tank reactor (CSTR) an agitated tank reactor with a continuous flow of reactants into and products from the agitated reactor system ideally, composition and temperature of the reaction mass is at all times identical to the composition and temperature of the product stream. [Pg.228]

In an ideal continuous stirred tank reactor, CSTR, the composition and temperature are uniform throughout and the condition of the effluent is the same as that of the tank. When a battery of such vessels is employed in series, the concentration profile is step shaped if the abscissa is total residence time or the stage number. [Pg.258]


See other pages where Ideal stirred tank reactor is mentioned: [Pg.521]    [Pg.88]    [Pg.2075]    [Pg.663]    [Pg.383]    [Pg.274]    [Pg.23]    [Pg.258]    [Pg.159]    [Pg.440]    [Pg.83]    [Pg.270]    [Pg.270]    [Pg.273]    [Pg.274]    [Pg.357]    [Pg.357]    [Pg.359]    [Pg.388]    [Pg.394]    [Pg.419]    [Pg.245]    [Pg.21]   
See also in sourсe #XX -- [ Pg.105 ]




SEARCH



Ideal reactors

Reactor ideal reactors

Reactor stirred

Reactors stirred tank reactor

Reactors stirring

Stirred tank reactors

Tank reactor

Tank reactor reactors

© 2024 chempedia.info