Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steric stabilization repulsion

For so-called steric stabilization to be effective, tire polymer needs to be attached to tire particles at a sufficiently high surface coverage and a good solvent for tire polymer needs to be used. Under such conditions, a fairly dense polymer bmsh witli tliickness L will be present around the particles. Wlren two particles approach, such tliat r < d + 2L, tire polymer layers may be compressed from tlieir equilibrium configuration, tluis causing a repulsive interaction. [Pg.2679]

DLVO Theory. The overall stabiUty of a particle dispersion depends on the sum of the attractive and repulsive forces as a function of the distance separating the particles. DLVO theory, named for Derjaguin and Landau (11) and Verwey and Overbeek (12), encompasses van der Waals attraction and electrostatic repulsion between particles, but does not consider steric stabilization. The net energy, AGp between two particles at a given distance is the sum of the repulsive and attractive forces ... [Pg.148]

A lattice model of uniaxial smectics, formed by molecules with flexible tails, was recently suggested by Dowell [29]. It was shown that differences in the steric (hard-repulsive) packing of rigid cores and flexible tails - as a function of tail chain flexibility - can stabilize different types of smectic A phases. These results explain the fact that virtually all molecules that form smectic phases (with only a few exceptions [la, 4]) have one or more flexible tail chains. Furthermore, as the chain tails are shortened, the smectic phase disappears, replaced by the nematic phase (Fig. 1). [Pg.204]

Two major types of stabilization mechanisms are described for submicron particles (1) charge stabilization, where surface charge forms a repulsive screen that prevents the particles from flocculation, and (2) steric stabilization, where a surface repulsive screen is formed by solvent-compatible flexible polymeric chains attached to the particle s surface. [Pg.442]

Two mechanisms of steric stabilization can be distinguished entropic stabilization and osmotic repulsion. Entropic stabilization arises when two opposing adsorbed polymer layers of adjacent particles overlap, resulting in compression and interpenetration of their... [Pg.252]

III PEG MPD Steric exclusion Repulsion from charges To hydrophobic regions Good precipitants stabilizers of native structure at low temp., unfolded structure at high temp. stabilizers and solubilizers of hydrophobic domains in proteins... [Pg.711]

Small metal particles are unstable with respect to agglomeration to the bulk. At short interparticle distances, two particles would be attracted to each other by van der Waals forces and, in the absence of repulsive forces to counteract this attraction, an unprotected sol would coagulate. To counteract this, stabilization can be achieved in two ways electrostatic stabilization and steric stabilization. [Pg.251]

Many investigators of steric stabilization have measured colloidal stability without taking the effort to find out whether the stability actually resulted from electrostatic stabilization. In many published articles it has been concluded that steric stabilization had been attained and further study showed this was not the case. One such example is a recent paper on "steric" stabilization by an additive of the same type used in this work. (12) The published photograph shows the silica particles in oil stabilized at interparticle separations several times the distances provided by the adsorbed films no electrical measurements had been made, but it they had, this particular dispersant would have provided about -200 mV of zeta-potential and given excellent electrostatic repulsion. The reader should be wary of any claims of steric stabilization unless the electrostatic contribution has been measured. [Pg.335]

Combined Electrostatic and Steric Stabilization. The combination of the two mechanisms is illustrated in Figure 4, taken from Shaw s textbook, (13) where the repulsion of the steric barrier during a collision falls off so rapidly as the colliding particles bounce apart that the dispersion force attractions hold the particles together in the "secondary minimum". This is exactly what happens in the system investigated in this paper. [Pg.336]

Repulsive forces between Fe oxide particles can be established by adsorption of suitable polymers such as proteins (Johnson and Matijevic, 1992), starches, non-ionic detergents and polyelectrolytes. Adsorption of such polymers stabilizes the particles at electrolyte concentrations otherwise high enough for coagulation to occur. Such stabilization is termed protective action or steric stabilization. It arises when particles approach each other closely enough for repulsive forces to develop. This repulsion has two sources. 1) The volume restriction effect where the ends of the polymer chains interpenetrate as the particles approach and lose some of their available conformations. This leads to a decrease in the free energy of the system which may be sufficient to produce a large repulsive force between particles. 2) The osmotic effect where the polymer chains from two particles overlap and produce a repulsion which prevents closer approach of the particles. [Pg.242]

Th-oxyhydroxide species readily dissolve upon dilution below the solubility limit, it is not veiy likely that such actinide(IV) colloids play a role away from the source in the far field of a repository. In the near field of a repository, however, they may be predominant species controlling the solubility of tetravalent actinide species such as U(IV) and Pu(IV) and thus the source term. Unusual stability at high ionic strength has been also reported for amorphous SiOz colloids (Iler 1979 Healy 1994) which also cannot be explained solely by electrostatic repulsion. Formation of oligomeric or polymeric silicate species at the colloid-water interface are thought to exert additional steric stabilization by preventing close approach of those particles. [Pg.535]

The dispersion polymerization system is composed of monomer, solvent, initiator, and stabilizer. The combination of monomer, solvent, and stabilizer is essential for particle preparation. That is to say, the stabilizer is chosen to meet the demand of the monomer and solvent. In any system, the stabilizer has affinity or cohesive strength for both the medium and the polymer particles. In a dispersion polymerization, the medium and polymer particles both are organic compounds. Therefore, it is not rational to rely on dispersion stabilization, which comes from the electrostatic repulsion force between particles. The stabilizer for dispersion polymerization that makes interfacial energy low must have affinity for particles due to the same quality and solvation at the surface of particles. It is desired that the stabilizer be a polymer that indicates a steric stabilization effect on the surface (5). [Pg.612]

Another way to interpret the above observations would be in terms of the general principle that effective steric stabilization of polymer-coated droplets requires that the continuous phase be a good quality solvent for the polymeric stabilizer. Under poor quality solvent conditions (asi-casein at high ionic strength), the required entropic stabilizing repulsion of the adsorbed protein layer is converted into a destabilizing polymer-mediated attraction (Dickinson and Stainsby, 1982 Dickinson, 2006). [Pg.198]

In many practical instances (see Vignette 1.5), electrostatic repulsion is not a convenient option. In such cases, a suitable polymer that adsorbs on the particle surfaces may be added to the dispersion. The resulting polymer layer masks the attraction and may also provide a repulsive force, partly due to pure steric effect, when the polymer layers on two interacting particles attempt to overlap with each other. This is what is known as polymer-induced stability. Polymer-induced stability is often referred to as steric stability for the above... [Pg.575]

Casein or egg-yolk proteins are used as emulsifiers in a number of food products, such as O/W food emulsions (Table 13.1) [78,824]. A key difference here is that in caseinate-stabilized oil emulsions, the casein forms essentially monolayers and there are no casein micelles nor any calcium phosphate. Such emulsions are thought to be stabilized more by electrostatic repulsive forces and less by steric stabilization, in contrast to the situation in homogenized milk products [824]. [Pg.309]


See other pages where Steric stabilization repulsion is mentioned: [Pg.38]    [Pg.38]    [Pg.2675]    [Pg.2679]    [Pg.534]    [Pg.354]    [Pg.63]    [Pg.452]    [Pg.342]    [Pg.251]    [Pg.119]    [Pg.240]    [Pg.219]    [Pg.887]    [Pg.65]    [Pg.600]    [Pg.323]    [Pg.524]    [Pg.619]    [Pg.498]    [Pg.5]    [Pg.48]    [Pg.266]    [Pg.485]    [Pg.486]    [Pg.391]    [Pg.416]    [Pg.204]    [Pg.208]    [Pg.134]    [Pg.136]    [Pg.134]    [Pg.135]    [Pg.136]    [Pg.131]   
See also in sourсe #XX -- [ Pg.219 ]




SEARCH



Repulsion, polymeric surfactant adsorption, steric stabilization

Stability repulsion

Stability steric

Steric repulsion

Steric stabilization

Steric stabilization entropic repulsion

Steric stabilizer

© 2024 chempedia.info