Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stability different types

A lattice model of uniaxial smectics, formed by molecules with flexible tails, was recently suggested by Dowell [29]. It was shown that differences in the steric (hard-repulsive) packing of rigid cores and flexible tails - as a function of tail chain flexibility - can stabilize different types of smectic A phases. These results explain the fact that virtually all molecules that form smectic phases (with only a few exceptions [la, 4]) have one or more flexible tail chains. Furthermore, as the chain tails are shortened, the smectic phase disappears, replaced by the nematic phase (Fig. 1). [Pg.204]

Hthiated 4-substituted-2-methylthia2oles (171) at -78 C (Scheme 80). Crossover experiments at—78 and 25°C using thiazoles bearing different substituents (R = Me, Ph) proved that at low temperature the lithioderivatives (172 and 173) do not exchange H/Li and that the product ratios (175/176) observed are the result of independent metala-tion of the 2-methyl and the C-5 positions in a kinetically controlled process (444). At elevated temperatures the thermodynamic acidities prevail and the resonance stabilized benzyl-type anion (Scheme 81) becomes more abundant, so that in fine the kinetic lithio derivative is 173, whereas the thermodynamic derivative is 172. [Pg.123]

Phosphates, which react with calcium to reduce the calcium ion activity, assist in stabilizing calcium-sensitive proteins, eg caseinate and soy proteinate, during processing. Phosphates also react with milk proteins. The extent of the reaction depends upon chain length. Casein precipitates upon addition of pyrophosphates, whereas whey proteins do not. Longer-chain polyphosphates cause the precipitation of both casein and whey proteins. These reactions are complex and not fully understood. Functions of phosphates in different types of dairy substitutes are summarized in Table 9 (see also Food additives). [Pg.443]

Trifluoromethanesulfonic (triflic) anhydride is commercially available or can be prepared easily by the reaction of triflic acid with phosphorus pentoxide [66] This moderately hygroscopic colorless liquid is a useful reagent for the preparation of various organic derivatives of triflic acid A large variety of organic ionic triflates can be prepared from triflic anhydride A recent example is the preparation of unusual oxo-bridged dicatiomc salts of different types [SS, 89, 90, 91, 92, 93] (equations 38-44) Stabilized dication ether salts of the Huckel aromatic system and some other systems (equations 38 and 39) can be prepared in one step by the... [Pg.956]

Generally the name of a compound should correspond to the most stable tautomer (76AHCS1, p. 5). This is often problematic when several tautomers have similar stabilities, but is a simple and reasonable rule whose violation could lead to naming phenol as cyclohexadienone. Different types of tautomerism use different types of nomenclature. For instance, in the case of annular tautomers both are named, e.g., 4(5)-methylimidazole, while for functional tautomerism, usually the name of an individual tautomer is used because to name all would be cumbersome. In the case of crystal structures, the name should reflect the tautomer actually found therefore, 3-nitropyrazole should be named as such (97JPOC637) and not as 3(5)-nitropyrazole. [Pg.6]

The symmetric series provides functional cyclohexadienes, whereas the non-symmetric one serves to build deuterated and/or functional arenes and tentacled compounds. In both series, several oxidation states can be used as precursors and provide different types of activation. The complexes bearing a number of valence, electrons over 18 react primarily by electron-transfer (ET). The ability of the sandwich structure to stabilize several oxidation states [21] also allows us to use them as ET reagents in stoichiometric and catalytic ET processes [18, 21, 22]. The last well-developed type of reactions is the nucleophilic substitution of one or two chlorine atoms in the FeCp+ complexes of mono- and o-dichlorobenzene. This chemistry is at least as rich as with the Cr(CO)3 activating group and more facile since FeCp+ activator is stronger than Cr(CO) 3. [Pg.50]

Fig. 5. Nearest neighbour triplet dipole configurations on triangular lattice, which play an important role in stabilization of different types of smectic A packings... Fig. 5. Nearest neighbour triplet dipole configurations on triangular lattice, which play an important role in stabilization of different types of smectic A packings...
The existence of tribrachial structure at the base of lifted flame implies that the stabilization of liftoff flames is controlled by the characteristics of tribrachial edge flames. The coexistence of three different types of flames dictates that the edge is located along the stoichiometric contour [52] and the premixed wings have the propagation characteristics, whose speed should balance with the local flow velocity for the edge to be stationary. In the first approximation, the propagation speed was assumed to be constant [10]. [Pg.61]

The HM and LM pectins give two very different types of gels the mechanisms of stabilization of the junction zones in the two cases are described and few characteristics given. The different molecular characteristics (DE, distribution of methoxyl or acetyl substituents, neutral sugar content or rhamnose content) play an important role on the kinetic of gelation, mechanical properties of the gel formed and also on the experimental conditions to form the stronger gels. All these points were briefly discussed. [Pg.31]

Previous reports on FMSZ catalysts have indicated that, in the absence of added H2, the isomerization activity exhibited a typical pattern when measured as a function of time on stream [8, 9], In all cases, the initial activity was very low, but as the reaction proceeded, the conversion slowly increased, reached a maximum, and then started to decrease. In a recent paper [7], we described the time evolution in terms of a simple mathematical model that includes induction and deactivation periods This model predicts the existence of two types of sites with different reactivity and stability. One type of site was responsible for most of the activity observed during the first few minutes on stream, but it rapidly deactivated. For the second type of site, both, the induction and deactivation processes, were significantly slower We proposed that the observed induction periods were due to the formation and accumulation of reaction intermediates that participate in the inter-molecular step described above. Here, we present new evidence to support this hypothesis for the particular case of Ni-promoted catalysts. [Pg.553]

Different type of reaction system containing organic solvent can be classified in a simple way. To accomplish this we first distinguished between microaqueous organic systems with a continuous organic phase, then reversed micelles stabilized with surfactant and a liquid-liquid biphasic system in which distinct organic and aqueous phase are mixed. The latter medium is discussed in this paper. [Pg.555]

Transition metals have been used to trap and stabilize many different types of reactive intermediates, such as carbenes. Reactive silicon intermediates have only recently yielded to this approach. In the case of alkenes, for instance, transition metal complexes are generally made by exposing the alkene to a transition metal bearing suitable leaving groups (e.g., carbonyl). Unlike carbon-based intermediates, however, silicon-based analogs have been very difficult to prepare until recently. Unless... [Pg.85]


See other pages where Stability different types is mentioned: [Pg.1626]    [Pg.10]    [Pg.1626]    [Pg.10]    [Pg.120]    [Pg.536]    [Pg.282]    [Pg.319]    [Pg.171]    [Pg.98]    [Pg.257]    [Pg.34]    [Pg.294]    [Pg.175]    [Pg.239]    [Pg.871]    [Pg.458]    [Pg.883]    [Pg.150]    [Pg.42]    [Pg.287]    [Pg.100]    [Pg.214]    [Pg.197]    [Pg.210]    [Pg.2]    [Pg.797]    [Pg.800]    [Pg.176]    [Pg.1]    [Pg.277]    [Pg.93]    [Pg.39]    [Pg.337]    [Pg.176]    [Pg.84]    [Pg.524]    [Pg.227]    [Pg.613]    [Pg.986]    [Pg.110]   
See also in sourсe #XX -- [ Pg.128 ]




SEARCH



© 2024 chempedia.info