Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steric hindrance compounds

The irans-benzylidene derivative (188), obtained as the major product of condensation of 3-methylpiperazine 2,5-dione and benzaldehyde in the presence of acetic anhydride, undergoes photoisomerization to the cis isomer (191) on irradiation in methanol. Both isomers have been converted into tetrahydropyrazine imino ethers (189) and (192) by treatment with triethyloxonium fluoroborate. The trans compound reacts more slowly and gives a lower yield of imino ether and this is attributed to steric hindrance. Compounds 188 and 191 are de-acetylated on treatment with methanolic 2 N potassium hydroxide. The trans and cis isomers (187) and (190), so produced are converted into 3-benzyl-2,5-dihydroxy-6-methylpyrazine (144) when heated at 100° with sodium hydroxide.384 Treatment of the dichloroacetyl derivative of phenylalanine with methylamine gives l-methyl-3-benzylidenepiperazine 2,5-dione with the stereochemistry shown.384a... [Pg.188]

The disadvantages associated with the Clemmensen reduction of carbonyl compounds (see 3 above), viz., (a) the production of small amounts of carbinols and unsaturated compounds as by-products, (h) the poor results obtained with many compounds of high molecular weight, (c) the non-appUcability to furan and pyrrole compounds (owing to their sensitivity to acids), and (d) the sensitivity to steric hindrance, are absent in the modified Wolff-Kishner reduction. [Pg.511]

A regioselective aldol condensation described by Biichi succeeds for sterical reasons (G. Biichi, 1968). If one treats the diaidehyde given below with acid, both possible enols are probably formed in a reversible reaaion. Only compound A, however, is found as a product, since in B the interaction between the enol and ester groups which are in the same plane hinders the cyclization. BOchi used acid catalysis instead of the usual base catalysis. This is often advisable, when sterical hindrance may be important. It works, because the addition of a proton or a Lewis acid to a carbonyl oxygen acidifies the neighbouring CH-bonds. [Pg.55]

The Michael reaction is of central importance here. This reaction is a vinylogous aldol addition, and most facts, which have been discussed in section 1.10, also apply here the reaction is catalyzed by acids and by bases, and it may be made regioselective by the choice of appropriate enol derivatives. Stereoselectivity is also observed in reactions with cyclic educts. An important difference to the aldol addition is, that the Michael addition is usually less prone to sterical hindrance. This is evidenced by the two examples given below, in which cyclic 1,3-diketones add to o, -unsaturated carbonyl compounds (K. Hiroi, 1975 H, Smith, 1964). [Pg.71]

Another widely used route to cyclopropanes involves the addition of sulfoniutn ylides to a,/3-unsaturated carbonyl compounds (S.R. Landor, 1967 R. Sowada, 1971 C.R. Johnson, I973B, 1979 B.M. Trost, 1975 A). Non-activated double bonds are not attacked. Sterical hindrance is of little importance in these reactions because the C—S bond is extraordinarily long... [Pg.75]

A major difficulty with the Diels-Alder reaction is its sensitivity to sterical hindrance. Tri- and tetrasubstituted olefins or dienes with bulky substituents at the terminal carbons react only very slowly. Therefore bicyclic compounds with polar reactions are more suitable for such target molecules, e.g. steroids. There exist, however, several exceptions, e. g. a reaction of a tetrasubstituted alkene with a 1,1-disubstituted diene to produce a cyclohexene intermediate containing three contiguous quaternary carbon atoms (S. Danishefsky, 1979). This reaction was assisted by large polarity differences between the electron rich diene and the electron deficient ene component. [Pg.86]

Traditional adsorbents such as sihca [7631 -86-9] Si02 activated alumina [1318-23-6] AI2O2 and activated carbon [7440-44-0], C, exhibit large surface areas and micropore volumes. The surface chemical properties of these adsorbents make them potentially useful for separations by molecular class. However, the micropore size distribution is fairly broad for these materials (45). This characteristic makes them unsuitable for use in separations in which steric hindrance can potentially be exploited (see Aluminum compounds, aluminum oxide (ALUMINA) Silicon compounds, synthetic inorganic silicates). [Pg.292]

Because of the rapid ring opening by the nucleophile, ayiridinium salts cannot usually be isolated. However, in a few cases it is possible to isolate such compounds (54), eg, at low temperatures, when the ayiridinium salts ate sparingly soluble or where there is steric hindrance to substitution. Stable ethyleneiminium salts can be prepared by reaction of ethyleneimine with acids not containing nucleophilic anions, for example HBF (55). [Pg.3]

Methacryhc acid and its ester derivatives are Ctfjy -unsaturated carbonyl compounds and exhibit the reactivity typical of this class of compounds, ie, Michael and Michael-type conjugate addition reactions and a variety of cycloaddition and related reactions. Although less reactive than the corresponding acrylates as the result of the electron-donating effect and the steric hindrance of the a-methyl group, methacrylates readily undergo a wide variety of reactions and are valuable intermediates in many synthetic procedures. [Pg.246]

Absorption, metaboHsm, and biological activities of organic compounds are influenced by molecular interactions with asymmetric biomolecules. These interactions, which involve hydrophobic, electrostatic, inductive, dipole—dipole, hydrogen bonding, van der Waals forces, steric hindrance, and inclusion complex formation give rise to enantioselective differentiation (1,2). Within a series of similar stmctures, substantial differences in biological effects, molecular mechanism of action, distribution, or metaboHc events may be observed. Eor example, (R)-carvone [6485-40-1] (1) has the odor of spearrnint whereas (5)-carvone [2244-16-8] (2) has the odor of caraway (3,4). [Pg.237]

The azo coupling reaction proceeds by the electrophilic aromatic substitution mechanism. In the case of 4-chlorobenzenediazonium compound with l-naphthol-4-sulfonic acid [84-87-7] the reaction is not base-catalyzed, but that with l-naphthol-3-sulfonic acid and 2-naphthol-8-sulfonic acid [92-40-0] is moderately and strongly base-catalyzed, respectively. The different rates of reaction agree with kinetic studies of hydrogen isotope effects in coupling components. The magnitude of the isotope effect increases with increased steric hindrance at the coupler reaction site. The addition of bases, even if pH is not changed, can affect the reaction rate. In polar aprotic media, reaction rate is different with alkyl-ammonium ions. Cationic, anionic, and nonionic surfactants can also influence the reaction rate (27). [Pg.428]

AH ahphatic aldehydes and most ketones react to form cyanohydrins. The lower reactivity of ketones, relative to aldehydes, is attributed to a combination of electron-donating effects and increased steric hindrance of the second alkyl group in the ketones. The magnitude of the equiUbrium constants for the addition of hydrogen cyanide to a carbonyl group is a measure of the stabiUty of the cyanohydrin relative to the carbonyl compound plus hydrogen cyanide ... [Pg.412]

Compound (253) is formed from benzaldehyde and methylhydroxylamine-O-sulfonic acid in 35% yield. With ethyl-substituted chloramine or hydroxylamine-O-sulfonic acid yields do not exceed 10%, which is assumed to be due to steric hindrance and is foreseeable for both carbonyl addition and O —N bond formation. [Pg.229]

Deghenghi and his co-workers.They found that in the compounds (17a) and (17b) the reactivities of the ketones are 3 > 11 > 20. The fact that the 3-ketone is more reactive than the 20-ketone is not surprising the greater reactivity of the 11-ketone is attributed to substantial steric hindrance by the 16,17-isopropylidenedioxy group. However, the paper does not describe the evidence on which the reduction product from (17b) was assigned a 3,11-dihydroxy rather than a 3,20-dihydroxy structure. [Pg.85]

The 13-ethyl-17-ketones, i.e., (63), have been found to be considerably less reactive than their 13-methyl counterparts towards acetylenic nucleophiles. The difference is attributed to the additional steric hindrance provided by the ethyl group. An attempt to introduce an ethynyl group into mc- 2>-isopropyl-3-methoxygona-l,3,5(10)-trien-17-one was unsuccessful even in ethylenediamine at 50°. However ethynylation of rac-13-isopropyl-3-methoxygona-1,3,5(10),8(14)-tetraen-17-one proceeded smoothly at room temperature to afford the 17a-ethynyl compound in 60% yield. ... [Pg.67]

The yield of 18-oximino compounds from 20jS-nitrites varies from 15 to 36% whereas with a 20oc-nitrite a 60-65% yield is reported. This difference has been ascribed to steric hindrance in the transition state for hydrogen abstraction in the case of the 20j3 derivative. Similar differences... [Pg.254]

The reactivity of aldehydes and ketones toward cyanide may be influenced by the steric and/or electronic properties of the carbonyl substituents, X. Examine spacefilling models of formaldehyde (X=H), acetone (X=Me), and benzophenone (X=Ph). Which compound offers the least steric hindrance to nucleophilic attack The most ... [Pg.139]

The higher selectivity observed with the threo-compound has been rationalized to arise from less steric hindrance in the five-membered transition state. [Pg.65]

Acylation of 6-APA by the naphthoic acid, 13, again affords an agent with considerable steric hindrance about the amide function. There is thus obtained the antibiotic nafcillin (14). a compound with good resistance to penicillinases. [Pg.412]

The next key step, the second dihydroxylation, was deferred until the lactone 82 had been formed from compound 80 (Scheme 20). This tactic would alleviate some of the steric hindrance around the C3-C4 double bond, and would create a cyclic molecule which was predicted to have a greater diastereofacial bias. The lactone can be made by first protecting the diol 80 as the acetonide 81 (88 % yield), followed by oxidative cleavage of the two PMB groups with DDQ (86% yield).43 Dihydroxylation of 82 with the standard Upjohn conditions17 furnishes, not unexpectedly, a quantitative yield of the triol 84 as a single diastereoisomer. The triol 84 is presumably fashioned from the initially formed triol 83 by a spontaneous translactonization (see Scheme 20), an event which proved to be a substantial piece of luck, as it simultaneously freed the C-8 hydroxyl from the lactone and protected the C-3 hydroxyl in the alcohol oxidation state. [Pg.697]

This contrary stereochemistry in the Bucherer - Bergs reaction of camphor has been attributed to steric hindrance of e.w-attack of the cyanide ion on the intermediate imine. Normally, equatorial approach of the cyanide ion is preferred, giving the axial (t>Mr/o)-amino nitrile by kinetic control. This isomer is trapped under Bucherer-Bergs conditions via urea and hydan-toin formation. In the Strecker reaction, thermodynamic control of the amino nitrile formation leads to an excess of the more stable compound with an equatorial (e.w)-amino and an axial (endo)-cyano (or carboxylic) function13-17. [Pg.785]

A comparison of the second-order rate coefficients for nitration of 2,4,6-tri-methylpyridine and 1,2,4,6-tetramethylpyridinium ion (both at the 3-position) shows similarity of profile in the common acidity region and a rapidly increasing rate with acidity for the trimethyl compound at acidities below 90 wt. % (where the usual maximum is obtained). These two pieces of evidence show reaction to occur on the conjugate acid as also indicated by the large negative entropy of activation. Surprisingly, the tetramethyl compound is less reactive than the trimethyl compound so maybe this is an example of steric hindrance to solvation. Calculation of the encounter rate also showed that reaction on the free base was unlikely. [Pg.18]

A kinetic isotope effect, kH/kD = 1.4, has been observed in the bromination of 3-bromo-l,2,4,5-tetramethylbenzene and its 6-deuterated isomer by bromine in nitromethane at 30 °C, and this has been attributed to steric hindrance to the electrophile causing kLx to become significant relative to k 2 (see p. 8)268. A more extensive subsequent investigation304 of the isotope effects obtained for reaction in acetic acid and in nitromethane (in parentheses) revealed the following values mesitylene, 1.1 pentamethylbenzene 1.2 3-methoxy-1,2,4,5-tetramethyl-benzene 1.5 5-t-butyl-1,2,3-trimethylbenzene 1.6 (2.7) 3-bromo-1,2,4,5-tetra-methylbenzene 1.4 and for 1,3,5-tri-f-butylbenzene in acetic acid-dioxan, with silver ion catalyst, kH/kD = 3.6. All of these isotope effects are obtained with hindered compounds, and the larger the steric hindrance, the greater the isotope... [Pg.125]


See other pages where Steric hindrance compounds is mentioned: [Pg.284]    [Pg.284]    [Pg.177]    [Pg.305]    [Pg.123]    [Pg.152]    [Pg.50]    [Pg.49]    [Pg.51]    [Pg.573]    [Pg.483]    [Pg.68]    [Pg.339]    [Pg.15]    [Pg.145]    [Pg.54]    [Pg.182]    [Pg.311]    [Pg.335]    [Pg.35]    [Pg.190]    [Pg.1301]    [Pg.301]    [Pg.247]    [Pg.336]    [Pg.10]    [Pg.114]    [Pg.124]   
See also in sourсe #XX -- [ Pg.718 ]

See also in sourсe #XX -- [ Pg.129 ]




SEARCH



Hindrance, 25.

Hindrance, sterical

© 2024 chempedia.info