Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steric effects aromatic substitution

The azo coupling reaction proceeds by the electrophilic aromatic substitution mechanism. In the case of 4-chlorobenzenediazonium compound with l-naphthol-4-sulfonic acid [84-87-7] the reaction is not base-catalyzed, but that with l-naphthol-3-sulfonic acid and 2-naphthol-8-sulfonic acid [92-40-0] is moderately and strongly base-catalyzed, respectively. The different rates of reaction agree with kinetic studies of hydrogen isotope effects in coupling components. The magnitude of the isotope effect increases with increased steric hindrance at the coupler reaction site. The addition of bases, even if pH is not changed, can affect the reaction rate. In polar aprotic media, reaction rate is different with alkyl-ammonium ions. Cationic, anionic, and nonionic surfactants can also influence the reaction rate (27). [Pg.428]

Resonance effects are the primary influence on orientation and reactivity in electrophilic substitution. The common activating groups in electrophilic aromatic substitution, in approximate order of decreasing effectiveness, are —NR2, —NHR, —NH2, —OH, —OR, —NO, —NHCOR, —OCOR, alkyls, —F, —Cl, —Br, —1, aryls, —CH2COOH, and —CH=CH—COOH. Activating groups are ortho- and para-directing. Mixtures of ortho- and para-isomers are frequently produced the exact proportions are usually a function of steric effects and reaction conditions. [Pg.39]

The substituent effects in aromatic electrophilic substitution are dominated by resonance effects. In other systems, stereoelectronic effects or steric effects might be more important. Whatever the nature of the substituent effects, the Hammond postulate insists diat structural discussion of transition states in terms of reactants, intermediates, or products is valid only when their structures and energies are similar. [Pg.219]

Bromination has been shown not to exhibit a primary kinetic isotope effect in the case of benzene, bromobenzene, toluene, or methoxybenzene. There are several examples of substrates which do show significant isotope effects, including substituted anisoles, JV,iV-dimethylanilines, and 1,3,5-trialkylbenzenes. The observation of isotope effects in highly substituted systems seems to be the result of steric factors that can operate in two ways. There may be resistance to the bromine taking up a position coplanar with adjacent substituents in the aromatization step. This would favor return of the ff-complex to reactants. In addition, the steric bulk of several substituents may hinder solvent or other base from assisting in the proton removal. Either factor would allow deprotonation to become rate-controlling. [Pg.578]

Taft began the LFER attack on steric effects as part of his separation of electronic and steric effects in aliphatic compounds, which is discussed in Section 7.3. For our present purposes we abstract from that treatment the portion relevant to aromatic substrates. Hammett p values for alkaline ester hydrolysis are in the range +2.2 to +2.8, whereas for acid ester hydrolysis p is close to zero (see Table 7-2). Taft, therefore, concluded that electronic effects of substituents are much greater in the alkaline than in the acid series and. in fact, that they are negligible in the acid series. This left the steric effect alone controlling relative reactivity in the acid series. A steric substituent constant was defined [by analogy with the definition of cr in Eq. (7-22)] by Eq. (7-43), where k is the rate constant for acid-catalyzed hydrolysis of an orr/to-substituted benzoate ester and k is the corresponding rate constant for the on/to-methyl ester note that CH3, not H, is the reference substituent. ... [Pg.335]

The scope of heteroaryne or elimination-addition type of substitution in aromatic azines seems likely to be limited by its requirement for a relatively unactivated leaving group, for an adjacent ionizable substituent or hydrogen atom, and for a very strong base. However, reaction via the heteroaryne mechanism may occur more frequently than is presently appreciated. For example, it has been recently shown that in the reaction of 4-chloropyridine with lithium piperidide, at least a small amount of aryne substitution accompanies direct displacement. The ratio of 4- to 3-substitution was 996 4 and, therefore, there was 0.8% or more pyridyne participation. Heteroarynes are undoubtedly subject to orientation and steric effects which frequently lead to the overwhelming predominance of... [Pg.152]

As the size of the nucleophile increases, reaction adjacent to a solvated azine-nitrogen or to a quatemized ring-nitrogen will be sterically hindered. The very large decelerative effect o > of solvation of the nucleophile in aromatic substitution is mentioned in Section I, D, 2, d. [Pg.260]

A variety of such ternary catalytic systems has been developed for diastereoselective carbon-carbon bond formations (Table). A Cp-substituted vanadium catalyst is superior to the unsubstituted one,3 whereas a reduced species generated from VOCl3 and a co-reductant is an excellent catalyst for the reductive coupling of aromatic aldehydes.4 A trinuclear complex derived from Cp2TiCl2 and MgBr2 is similarly effective for /-selective pinacol coupling.5 The observed /-selectivity may be explained by minimization of steric effects through anti-orientation of the bulky substituents in the intermediate. [Pg.15]

The results obtained with different amines cannot be explained merely on the effects of amine basicity. Thus, to obtain complete hydrogenation of Q to DHQ, the basicity has to be tailored by other factors such as the steric hindrance of the amine and its electronic interaction with the catalyst active sites this seems to be favored by the presence of an electron-rich aromatic ring. Of note, the positive effect of substituted aromatic amines, with a 49% DHQ yield being obtained for ethylanilines, is independent of the substituent position of the alkyl group. [Pg.108]

The Claisen-Schmidt condensation of 2 -hydroxyacetophenone and different chlorinated benzaldehydes over MgO has been investigated through kinetic and FTIR spectroscopic studies. The results indicate that the position of the chlorine atom on the aromatic ring of the benzaldehyde substantially affects the rate of this reaction. In particular, the rate increases in the following order p-chlorobenzaldehyde < m-chlorobenzaldehyde < o-chlorobenzaldehyde. The difference between the meta and para-substituted benzaldehyde can be attributed to electronic effects due to the difference in the Hammett constants for these two positions. Steric effects were found to be responsible for the higher rate observed with the o-chlorobenzaldehyde. [Pg.385]

The first step of a free radical aromatic substitution, the formation of the a-com-plex, is also an addition step. The o,m,p-product ratio therefore also responds to steric effects. This is shown for the free radical phenylation and dimethylamination of toluene and r.-butylbenzene in Table 8. The larger the substituent on the aromatic system and the bulkier the attacking radical, the more p-substitution product is obtained at the expense of o-substitution. In the phenylation reaction the yield of m-product also increases in contrast to the dimethylamination reaction. The substitution pattern of this latter reaction is, in addition to the steric effect, governed heavily by polar effects because a radical cation is the attacking species113. ... [Pg.25]

Table 8. Steric substituent effects in free radical aromatic substitutions... Table 8. Steric substituent effects in free radical aromatic substitutions...
In its original form the Hammett equation was appropriate for use with para and meta substituted compounds where the reaction site is separated from the aromatic group by a nonconjugating side chain. Although there have been several extensions and modifications that permit the use of the Hammett equation beyond these limitations, it is not appropriate for use with ortho substituted compounds, since steric effects are likely to be significant with such species. The results obtained using free radical reactions are often poor, and the correlation is more appropriate for use with ionic reactions. For a detailed discussion of the Hammett equation and its extensions, consult the texts by Hammett (37), Amis and Hinton (12), and Johnson (47). [Pg.239]

The quantitative treatment of the electron-transfer paradigm in Scheme l by FERET (equation (104)) is restricted to the comparative study of a series of structurally related donors (or acceptors). Under these conditions, the reactivity differences due to electronic properties inherent to the donor (or acceptor) are the dominant factors in the charge-transfer assessment, and any differences due to steric effects are considered minor. Such a situation is sufficient to demonstrate the viability of the electron-transfer paradigm to a specific type of donor acceptor behavior (e.g. aromatic substitution, olefin addition, etc.). However, a more general consideration requires that any steric effect be directly addressed. [Pg.301]


See other pages where Steric effects aromatic substitution is mentioned: [Pg.569]    [Pg.998]    [Pg.177]    [Pg.69]    [Pg.18]    [Pg.340]    [Pg.48]    [Pg.381]    [Pg.154]    [Pg.260]    [Pg.74]    [Pg.243]    [Pg.329]    [Pg.494]    [Pg.531]    [Pg.685]    [Pg.9]    [Pg.211]    [Pg.494]    [Pg.531]    [Pg.152]    [Pg.58]    [Pg.55]    [Pg.63]    [Pg.181]    [Pg.1267]    [Pg.170]    [Pg.90]    [Pg.335]    [Pg.364]    [Pg.372]    [Pg.164]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Electrophilic substitution, aromatic steric effects

Steric effect aromatic

Steric effects in aromatic substitution

Steric effects in electrophilic aromatic substitution

© 2024 chempedia.info