Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anisoles, substituted

Diastereoselective Cr(CO) complexes.2 Anisoles substituted in the orthoposition by a hydroxyl-substituted side chain can undergo diastereoselective... [Pg.23]

Sulphinic acids. Aromatic sulphinic acids are found in Solubility Group II. They may be detected by dissolving in cold concentrated sulphuric acid and adding one drop of phenetole or anisole when a blue colour is produced (Smiles s test), due to the formation of a para-substituted aromatic sulphoxide. Thus the reaction with benzenesulphinic acid is ... [Pg.1078]

The best-known equation of the type mentioned is, of course, Hammett s equation. It correlates, with considerable precision, rate and equilibrium constants for a large number of reactions occurring in the side chains of m- and p-substituted aromatic compounds, but fails badly for electrophilic substitution into the aromatic ring (except at wi-positions) and for certain reactions in side chains in which there is considerable mesomeric interaction between the side chain and the ring during the course of reaction. This failure arises because Hammett s original model reaction (the ionization of substituted benzoic acids) does not take account of the direct resonance interactions between a substituent and the site of reaction. This sort of interaction in the electrophilic substitutions of anisole is depicted in the following resonance structures, which show the transition state to be stabilized by direct resonance with the substituent ... [Pg.137]

SuIfona.tlon, Sulfonation is a common reaction with dialkyl sulfates, either by slow decomposition on heating with the release of SO or by attack at the sulfur end of the O—S bond (63). Reaction products are usually the dimethyl ether, methanol, sulfonic acid, and methyl sulfonates, corresponding to both routes. Reactive aromatics are commonly those with higher reactivity to electrophilic substitution at temperatures > 100° C. Tn phenylamine, diphenylmethylamine, anisole, and diphenyl ether exhibit ring sulfonation at 150—160°C, 140°C, 155—160°C, and 180—190°C, respectively, but diphenyl ketone and benzyl methyl ether do not react up to 190°C. Diphenyl amine methylates and then sulfonates. Catalysis of sulfonation of anthraquinone by dimethyl sulfate occurs with thaHium(III) oxide or mercury(II) oxide at 170°C. Alkyl interchange also gives sulfation. [Pg.200]

Bromination has been shown not to exhibit a primary kinetic isotope effect in the case of benzene, bromobenzene, toluene, or methoxybenzene. There are several examples of substrates which do show significant isotope effects, including substituted anisoles, JV,iV-dimethylanilines, and 1,3,5-trialkylbenzenes. The observation of isotope effects in highly substituted systems seems to be the result of steric factors that can operate in two ways. There may be resistance to the bromine taking up a position coplanar with adjacent substituents in the aromatization step. This would favor return of the ff-complex to reactants. In addition, the steric bulk of several substituents may hinder solvent or other base from assisting in the proton removal. Either factor would allow deprotonation to become rate-controlling. [Pg.578]

Phenol and anisole are among the commonly encountered benzene derivatives listed in Table 11.1. Electrophilic aromatic substitution in phenol is discussed in more detail in Section 24.8. [Pg.494]

The methoxy group of methoxythiophenes shows a reactivity which, in many respects, differs appreciably from the reactivity of the corresponding anisoles. Thus, in an attempted Hoesch synthesis with 5-methoxy-2-thenylcyanide (167) and phloroglucinol, the methoxy group reacted instead and 5-(2, 4, 6 -trihydroxyphenyl)-2-thenyl cyanide (168) was obtained. 2-Thenyl cyanide reacts normally in the Hoesch synthesis, Likewise, upon acid hydrolysis of the reaction product of 5-methoxy-2-thienyllithium with benzophenone, (169) was obtained instead of the expected substituted methoxythiophene. No defined products could be isolated from the attempted Claisen rear-... [Pg.84]

For the Birch reduction of mono-substituted aromatic substrates the substituents generally influence the course of the reduction process. Electron-donating substituents (e.g. alkyl or alkoxyl groups) lead to products with the substituent located at a double bond carbon center. The reduction of methoxybenzene (anisole) 7 yields 1-methoxycyclohexa-1,4-diene 8 ... [Pg.44]

Only one example, showing high stereoselectivity, is known in this class of reactions. On treatment of the acyclic glycine cation equivalent 1 (see Appendix), containing the ( + )-cam-phor-10-sulfonamide ester as a chiral auxiliary, with boron trifluoridc and anisole at 0"C a mixture of aromatic substitution products is obtained in essentially quantitative yield 55. Besides 11 % of cuV/io-substitution product, the mixture contains (R,S)-2 and its (/ ,/ )-epimer in a ratio >96 4 (NMR). The same stereoisomer 2 predominates when the reaction is conducted in sulfuric acid/acetic acid 1 9, although the selectivity is slightly lower (91 9 besides 25% of ortho substitution). [Pg.825]

It has been shown that it is possible to compel regiospecific para substitution by enclosing the substrate molecules in a cavity from which only the para position projects. Anisole was chlorinated in solutions containing a cyclodextrin, a molecule in which the anisole is almost entirely enclosed (see Fig. 3.4). With a high enough concentration of cyclodextrin, it was possible to achieve a para/ortho ratio of 21.6 (in the absence of the cyclodextrin the ratio was only 1.48). This behavior is a model for the regioselectivity found in the action of enzymes. [Pg.686]

Dichlorodibenzo-p-dioxin was prepared from isotopic potassium 2,4-dichlorophenate uniformly labeled with Ullman conditions gave a 20.5% yield. Small amounts of dichlorophenoxy chlorophenol were removed from the product by extraction with sodium hydroxide before purification by fractional sublimation and recrystallization from anisole. Chlorination of 2,7-dichlorodibenzo-p-dioxin in chloroform solution containing trace amounts of FeCls and 12 yielded a mixture of tri-, tetra-, and pentachloro substitution products. Purification by digestion in boiling chloroform, fractional sublimation, and recrystallization from anisole was effective in refining this product to 92% 2,3,7,8-tetrachloro isomer, which also contained 7% of the tri- and 1% of the penta-substituted dibenzo-p-dioxin. Mass spectroscopy was used exclusively to monitor the quality of the products during the synthesis. [Pg.1]

Advantage was taken of these solubility differences in refining mixtures of the chlorinated dibenzodioxins. Digestion with boiling chloroform was effective in removing trichlorodibenzodioxin while recrystallization from anisole reduced the penta-substituted isomer content. In a typical purification (Table II) these two procedures were alternated through four cycles. The assays were made by mass spectroscopy using the batch injection method to introduce the sample into the spectrometer. X-ray studies 14) confirmed the structure. [Pg.4]

II. B polyethylene glycol, ethylene oxide, polystyrene, diisocyanates (urethanes), polyvinylchloride, chloroprene, THF, diglycolide, dilac-tide, <5-valerolactone, substituted e-caprolactones, 4-vinyl anisole, styrene, methyl methacrylate, and vinyl acetate. In addition to these species, many copolymers have been prepared from oligomers of PCL. In particular, a variety of polyester-urethanes have been synthesized from hydroxy-terminated PCL, some of which have achieved commercial status (9). Graft copolymers with acrylic acid, acrylonitrile, and styrene have been prepared using PCL as the backbone polymer (60). [Pg.84]

The weaker Lewis add TMSOTf 20 as catalyst gives, after 2 h at 0°C in CH2CI2, a 20 80 mixture of 805 and 806 in only 23% yield (Scheme 6.8). But this yield will probably increase either on longer reaction time at 0°C or on shorter reaction time at 25 °C On replacing one of the methyl groups in 804 by an acetylene substituent the resulting enyne adds allyltrimethylsilane 82 or anisole in the presence of TMSOTf 20 to give allenes [18]. Substituted allyltrimethylsilanes such as 808 react with the allylic silylether 807 after 70 h at 25 °C in 62% yield to a 41 59 mixture of 809 and 810 as well as 7 [17]. Closely related additions of 82 to allylic ethers or O-acetates are discussed in Refs. 17a-c. [Pg.139]

Due to the aromatic character of Cp2Ee predicted by Woodward and confirmed by the reactivity toward electrophilic substitutions, which proceed with rates comparable to anisole, the name ferrocene was coined in analogy to simple aromatic systems [6]. [Pg.142]

As mentioned above, ferrocene is amenable to electrophilic substitution reactions and acts like a typical activated electron-rich aromatic system such as anisole, with the limitation that the electrophile must not be a strong oxidizing agent, which would lead to the formation of ferrocenium cations instead. Formation of the CT-complex intermediate 2 usually occurs by exo-attack of the electrophile (from the direction remote to the Fe center. Fig. 3) [14], but in certain cases can also proceed by precoordination of the electrophile to the Fe center (endo attack) [15]. [Pg.143]


See other pages where Anisoles, substituted is mentioned: [Pg.83]    [Pg.329]    [Pg.281]    [Pg.118]    [Pg.222]    [Pg.665]    [Pg.118]    [Pg.222]    [Pg.220]    [Pg.81]    [Pg.83]    [Pg.329]    [Pg.281]    [Pg.118]    [Pg.222]    [Pg.665]    [Pg.118]    [Pg.222]    [Pg.220]    [Pg.81]    [Pg.96]    [Pg.240]    [Pg.65]    [Pg.199]    [Pg.224]    [Pg.560]    [Pg.53]    [Pg.165]    [Pg.109]    [Pg.185]    [Pg.259]    [Pg.53]    [Pg.95]    [Pg.114]    [Pg.175]    [Pg.695]    [Pg.705]    [Pg.1010]    [Pg.3]    [Pg.306]    [Pg.272]   
See also in sourсe #XX -- [ Pg.329 ]




SEARCH



Anisol

Anisole

Anisole electrophilic substitution

Anisole meta substitution

Anisole ortho substitution

Anisole para substitution

© 2024 chempedia.info