Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoselectivity enantiomeric excess

Asymmetric hydrogenation has been achieved with dissolved Wilkinson type catalysts (A. J. Birch, 1976 D. Valentine, Jr., 1978 H.B. Kagan, 1978). The (R)- and (S)-[l,l -binaph-thalene]-2,2 -diylblsCdiphenylphosphine] (= binap ) complexes of ruthenium (A. Miyashita, 1980) and rhodium (A. Miyashita, 1984 R. Noyori, 1987) have been prepared as pure atrop-isomers and used for the stereoselective Noyori hydrogenation of a-(acylamino) acrylic acids and, more significantly, -keto carboxylic esters. In the latter reaction enantiomeric excesses of more than 99% are often achieved (see also M. Nakatsuka, 1990, p. 5586). [Pg.102]

The primary disadvantage of the conjugate addition approach is the necessity of performing two chiral operations (resolution or asymmetric synthesis) ia order to obtain exclusively the stereochemicaHy desired end product. However, the advent of enzymatic resolutions and stereoselective reduciag agents has resulted ia new methods to efficiently produce chiral enones and CO-chain synthons, respectively (see Enzymes, industrial Enzymes in ORGANIC synthesis). Eor example, treatment of the racemic hydroxy enone (70) with commercially available porciae pancreatic Hpase (PPL) ia vinyl acetate gave a separable mixture of (5)-hydroxyenone (71) and (R)-acetate (72) with enantiomeric excess (ee) of 90% or better (204). [Pg.162]

An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

The milder metal hydnde reagents are also used in stereoselective reductions Inclusion complexes of amine-borane reagent with cyclodexnins reduce ketones to opucally active alcohols, sometimes in modest enantiomeric excess [59] (equation 48). Diisobutylaluminum hydride modified by zmc bromide-MMA. A -tetra-methylethylenediamme (TMEDA) reduces a,a-difluoro-[i-hydroxy ketones to give predominantly erythro-2,2-difluoro-l,3-diols [60] (equation 49). The three isomers are formed on reduction with aluminum isopropoxide... [Pg.308]

Wide variations in stereoselectivity are possible between the and Z isomers (79). In hydrogenation of several ( )- and (Z)-a-acylaminocinnamic acid derivatives, the Z isomers gave greater enantiomeric excesses at 15-100 times the rate of reduction of the isomer, but in all cases the 5 enantiomer was formed in greater excess (//7). The greater effectiveness of Z-olefins is general If8). [Pg.47]

Optically active (Z)-l-substituted-2-alkenylsilanes are also available by asymmetric cross coupling, and similarly react with aldehydes in the presence of titanium(IV) chloride by an SE process in which the electrophile attacks the allylsilane double bond unit with respect to the leaving silyl group to form ( )-s)vr-products. However the enantiomeric excesses of these (Z)-allylsilanes tend to be lower than those of their ( )-isomers, and their reactions with aldehydes tend to be less stereoselective with more of the (E)-anti products being obtained74. [Pg.353]

Trimethyl(l-phenyl-2-propenyl)silane of high enantiomeric excess has also been prepared by asymmetric cross coupling, and reacts with aldehydes to give optically active products in the presence of titanium(IV) chloride. The stereoselectivity of these reactions is consistent with the antiperiplanar process previously outlined75. [Pg.353]

Optically active 3-(trimethylsilyl)cyclopentene of moderate enantiomeric excess is available by asymmetric hydrosilation (see Section 1.3.3.3.5.1.5.) and reacts with aldehydes with reasonable stereoselectivity in the presence of titanium(IV) chloride36. [Pg.354]

Efficiency and selectivity are the two keywords that better outline the outstanding performances of enzymes. However, in some cases unsatisfactory stereoselectivity of enzymes can be found and, in these cases, the enantiomeric excesses of products are too low for synthetic purposes. In order to overcome this limitation, a number of techniques have been proposed to enhance the selectivity of a given biocatalyst. The net effect pursued by all these protocols is the increase of the difference in activation energy (AAG ) of the two competing diastereomeric enzyme-substrate transition state complexes (Figure 1.1). [Pg.3]

Another approach to the synthesis of chiral non-racemic hydroxyalkyl sulfones used enzyme-catalysed kinetic resolution of racemic substrates. In the first attempt. Porcine pancreas lipase was applied to acylate racemic (3, y and 8-hydroxyalkyl sulfones using trichloroethyl butyrate. Although both enantiomers of the products could be obtained, their enantiomeric excesses were only low to moderate. Recently, we have found that a stereoselective acetylation of racemic p-hydroxyalkyl sulfones can be successfully carried out using several lipases, among which CAL-B and lipase PS (AMANO) proved most efficient. Moreover, application of a dynamic kinetic resolution procedure, in which lipase-promoted kinetic resolution was combined with a concomitant ruthenium-catalysed racem-ization of the substrates, gave the corresponding p-acetoxyalkyl sulfones 8 in yields... [Pg.163]

The results presented in Tables 3 and 4 deserve some comments. First, a variety of enzymes, including whole-cell preparations, proved suitable for the resolution of different hydroxyalkanephosphorus compounds, giving both unreacted substrates and the products of the enzymatic transformation in good yields and, in some cases, even with full stereoselectivity. Application of both methodologies, acylation of hydroxy substrates rac-41 and rac-43 or the reverse (hydrolysis of the acylated substrates rac-42 and rac-44), enables one to obtain each desired enantiomer of the product. This turned out to be particularly important in those cases when a chemical transformation OH OAc or reverse was difficult to perform. As an example, our work is shown in Scheme 3. In this case, chemical hydrolysis of the acetyl derivative 46 proved difficult due to some side reactions and therefore an enzymatic hydrolysis, using the same enzyme as that in the acylation reaction, was applied. Not only did this provide access to the desired hydroxy derivative 45 but it also allowed to improve its enantiomeric excess. In this way. [Pg.173]

On the basis of this result, a method was developed which allowed to stereoselectively obtain one diastereomer of the product with a high enantiomeric excess, but in a maximum yield of 25%, starting from a diastereomeric mixture of the substrate (Equation 39). ... [Pg.189]

The reduction of several ketones, which were transformed by the wild-type lyophilized cells of Rhodococcus ruber DSM 44541 with moderate stereoselectivity, was reinvestigated employing lyophilized cells of Escherichia coli containing the overexpressed alcohol dehydrogenase (ADH- A ) from Rhodococcus ruber DSM 44541. The recombinant whole-cell biocatalyst significantly increased the activity and enantioselectivity [41]. For example, the enantiomeric excess of (R)-2-chloro-l-phenylethanol increased from 43 to >99%. This study clearly demonstrated the advantages of the recombinant whole cell biocatalysts over the wild-type whole cells. [Pg.143]

The proposed dinuclear transition-state model (1) has been supported by the observation of nonlinear relationship between enantiomeric excess (ee) of the epoxide and ee of DAT.33 The use of simple diol instead of tartrate vitiates stereoselectivity of the reaction.34,35 The ester group of DAT is indispensable for the construction of the desired catalyst. It is noteworthy that 1,2-di(o-methoxy-phenyl)ethylenediol is an efficient chiral auxiliary for titanium-mediated epoxidation, while 1,2-diphenylethylenediol is a poor one.36... [Pg.209]

A very interesting organocatalyzed one-pot Michael addition/aldol condensation/Darzens condensation has been reported for the asymmetric synthesis of epoxy-ketones <06JA5475>. An initial asymmetric Michael condensation between 16 and 17 is catalyzed by proline derivative 18. Intermediate 19 then undergoes an aldol condensation followed by a stereoselective Darzens condensation to provide epoxy-ketone 20 in moderate yield and with surprisingly good enantiomeric excess. [Pg.74]

A polymeric version of Jacobsen s Cr-salen catalyst has also been reported <06TA1638>. This polymeric catalyst worked well with a variety of amines, showed excellent enantio- and diastereoselectivity with an enantiomeric excess of 90-98%. Most importantly the catalyst was reusable with no loss in stereoselectivity of the products. [Pg.75]

The mechanism of the stereoselective syntheses of (K)-3-aryl-5-(hydroxy-methyl)oxazolidinones via the Mannenin reaction of aryl carbamic acid esters with (Jt)-glycidyl butyrate has been explored in detail by Brickner et al. [60]. Namely, N-lithiated carbamate derivatives of anilines are allowed to react with the commercially available (K)-glycidyl butyrate (96-98% enantiomeric excess ee) under appropriate conditions to obtain enantiomerically pure (Jt)-3-aryl-5-(hydroxymethyl)oxazolidinones in 85-99% yields, according the pathways depicted in Scheme 19. [Pg.192]

Details of the first stereoselective hydrogenation in ionic liquids were published by the group of Chauvin [68], who reported the enantioselective hydrogenation of the enamide a-acetamidocinnamic acid in the biphasic system [BMIM][SbF6]/ iPrOH (ratio 3 8) catalyzed by [Rh(cod) (-)-diop ][PF6]. The reaction afforded (S)-N-acetylphenylalanine in 64% enantiomeric excess (ee) (Fig. 41.4). The product was easily and quantitatively separated and the ionic hquid could be recovered, while the loss of rhodium was less than 0.02%. [Pg.1401]

As the t-butyl group can readily be removed upon acidic or basic hydrolysis, this method can also be used for //-hydroxyl acid synthesis. In analogy with allylation reactions, the enolate added preferentially to the Re-face of the aldehydes in aldol reactions. Titanium enolate 66 tolerates elevated temperatures, while the enantioselectivity of the reaction is almost temperature independent. The reaction can be carried out even at room temperature without significant loss of stereoselectivity. We can thus conclude that this reaction has the following notable advantages High enantiomeric excess can be obtained (ee > 90%) the reaction can be carried out at relatively high temperature the chiral auxiliary is readily available and the chiral auxiliary can easily be recovered.44... [Pg.155]

Stereoselective hydrogenation ofl -diketones. Hydrogenation of 1,3-alkane-diones catalyzed by Ru2Cl4[(R)-l][N(C2H5)3] results in anf/-l,3-diols with high dias-tereoisomeric and enantiomeric excesses (equation I). Under the same conditions l-phenyl-l,3-butanedione (2) is reduced mainly to the (3-hydroxy ketone 3 in 98%... [Pg.41]

Wynberg3 has also effected stereoselective addition of (C2H5)2Zn to aryl aldehydes using cinchona alkaloids, particularly quinine and quinidine, which result in (R)- and (S)-alcohols in excess, respectively. The highest enantiomeric excess, 92% ee, was observed with o-ethoxybenzaldehyde catalyzed by quinine. [Pg.234]


See other pages where Stereoselectivity enantiomeric excess is mentioned: [Pg.219]    [Pg.41]    [Pg.203]    [Pg.47]    [Pg.141]    [Pg.172]    [Pg.172]    [Pg.481]    [Pg.484]    [Pg.987]    [Pg.3]    [Pg.124]    [Pg.285]    [Pg.114]    [Pg.200]    [Pg.260]    [Pg.256]    [Pg.364]    [Pg.172]    [Pg.48]    [Pg.144]    [Pg.345]    [Pg.4]    [Pg.1274]    [Pg.1338]    [Pg.165]    [Pg.461]    [Pg.27]    [Pg.312]    [Pg.484]   
See also in sourсe #XX -- [ Pg.305 ]




SEARCH



Enantiomeric excess

© 2024 chempedia.info