Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stage volatile

Solid-phase microextraction (SPME) is a static head-space method similar to the carbon strip method however, it does not require a solvent desorption stage. Volatiles are extracted from the headspace by absorption into an absorbent polymer such as poly-dimethylsiloxane (ASTM method E2154). The absorbent polymer is coated onto a quartz fiber that is housed within a needle similar to a syringe needle. The coated fiber is exposed beyond the tip of the needle in the headspace above the fire debris. As with the carbon strip method, the fiber debris sample can be heated to increase the concentration of volatiles in the headspace. Volatiles are absorbed within the polymer with exposure times for routine screening being within the range 5-15 min. The fiber is retracted within the needle and can then be directly inserted into the injector of a gas chromatograph where the volatiles are thermally desorbed from the polymer onto the column. SPME fibers can be reused but appropriate blanks need to be run to ensure that the fiber is clean. [Pg.1624]

The elevated temperatures used during deodorization are sufficient to initiate some chemical reactions both on the oil and on some of its minor components. Hydroperoxides, frequently the precursors of off-flavor development, are completely broken down during the deodorization process, so the peroxide value of a freshly deodorized oil is zero. Values other than zero frequently indicate the presence of a small air leak in the equipment, normally in the post-deodorization cooling stages. Volatile products of this thermal decomposition are normally stripped from the oil during the deodorization process, but any nonvolatile fragments will stay with the finished oil, possibly with detrimental effects on its quality. [Pg.400]

When a mixture contains components with a broad range of volatilities, either a partial condensation from the vapor phase or a partial vaporization from the liquid phase followed by a simple phase split often can produce an effective separation. This is in essence a single-stage distillation process. However, by its very nature, a single-stage separation does not produce pure products hence further separation of both liquid and vapor streams is often required. [Pg.106]

The extraction of titanium is still relatively costly first the dioxide Ti02 is converted to the tetrachloride TiCl4 by heating with carbon in a stream of chlorine the tetrachloride is a volatile liquid which can be rendered pure by fractional distillation. The next stage is costly the reduction of the tetrachloride to the metal, with magnesium. must be carried out in a molybdenum-coated iron crucible in an atmospheric of argon at about 1100 K ... [Pg.370]

A schematic illustration of a typical inlet apparatus for separating volatile hydrides from the analyte solution, in which they are generated upon reduction with sodium tetrahydroborate. When the mixed analyte solution containing volatile hydrides enters the main part of the gas/liquid separator, the volatiles are released and mix with argon sweep and makeup gas, with which they are transported to the center of the plasma. The unwanted analyte solution drains from the end of the gas/liquid separator. The actual construction details of these gas/liquid separators can vary considerably, but all serve the same purpose. In some of them, there can be an intermediate stage for removal of air and hydrogen from the hydrides before the latter are sent to the plasma. [Pg.100]

Compounds having low vapor pressures at room temperature are treated in water-cooled or air-cooled condensers, but more volatile materials often requite two-stage condensation, usually water cooling followed by refrigeration. Minimising noncondensable gases reduces the need to cool to extremely low dew points. Partial condensation may suffice if the carrier gas can be recycled to the process. Condensation can be especially helpful for primary recovery before another method such as adsorption or gas incineration. Both surface condensers, often of the finned coil type, and direct-contact condensers are used. Direct-contact condensers usually atomize a cooled, recirculated, low vapor pressure Hquid such as water into the gas. The recycle hquid is often cooled in an external exchanger. [Pg.389]

The Dynamit-Nobel extmsion process (252) utilizes a volatile plasticizer such as acetone which is injected into the decompression section of a two-stage screw and is uniformly dispersed in the vinyl resin containing a stabilizer. The resulting PVC foam has low density and closed cells. [Pg.420]

The combustion process proceeds in two stages in the primary section the soHd phase bums and volatile gases are driven off in the secondary section, these volatile gases are burned. The combustion of refuse wastes often requires an auxiUary burner to maintain sufficient temperature for complete combustion. Large amounts of excess air, as high as 300%, are frequendy used. [Pg.46]

The volatile content of the treated paper is important because moisture acts as a temporary plasticizer to promote resin flow during early stages of pressing (9). Dynamic mechanical analysis of the treated paper is a very useful means to study the initial flow stages of a resin and the cure time required to complete cross-linking (10). [Pg.533]

Vacuum Treatment. Milk can be exposed to a vacuum to remove low boiling substances, eg, onions, garlic, and some silage, which may impart off-flavors to the milk, particularly the fat portion. A three-stage vacuum unit, known as a vacreator, produces pressures of 17, 51—68, and 88—95 kPa (127, 381—508, and 660—711 mm Hg). A continuous vacuum unit in the HTST system may consist of one or two chambers and be heated by Hve steam, with an equivalent release of water by evaporation, or flash steam to carry off the volatiles. If Hve steam is used, it must be cuUnary steam which is produced by heating potable water with an indirect heat exchanger. Dry saturated steam is desired for food processing operations. [Pg.359]

Cure kinetics of thermosets are usually deterrnined by dsc (63,64). However, for phenohc resins, the information is limited to the early stages of the cure because of the volatiles associated with the process. For pressurized dsc ceUs, the upper limit on temperature is ca 170°C. Differential scanning calorimetry is also used to measure the kinetics and reaction enthalpies of hquid resins in coatings, adhesives, laminations, and foam. Software packages that interpret dsc scans in terms of the cure kinetics are supphed by instmment manufacturers. [Pg.301]


See other pages where Stage volatile is mentioned: [Pg.2374]    [Pg.26]    [Pg.417]    [Pg.138]    [Pg.172]    [Pg.401]    [Pg.2129]    [Pg.2378]    [Pg.401]    [Pg.1003]    [Pg.2374]    [Pg.26]    [Pg.417]    [Pg.138]    [Pg.172]    [Pg.401]    [Pg.2129]    [Pg.2378]    [Pg.401]    [Pg.1003]    [Pg.246]    [Pg.5]    [Pg.415]    [Pg.277]    [Pg.296]    [Pg.195]    [Pg.206]    [Pg.387]    [Pg.284]    [Pg.268]    [Pg.52]    [Pg.336]    [Pg.307]    [Pg.296]    [Pg.296]    [Pg.100]    [Pg.403]    [Pg.268]    [Pg.381]    [Pg.482]    [Pg.501]    [Pg.248]    [Pg.482]    [Pg.162]    [Pg.400]    [Pg.400]    [Pg.362]    [Pg.504]    [Pg.530]    [Pg.376]   
See also in sourсe #XX -- [ Pg.124 ]




SEARCH



Relative Volatility in One Theoretical Stage

© 2024 chempedia.info