Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stabilization suspension polymerization

Wu and coworkers [102] reported on the inverse Pickering suspension polymerization of N-isopropyl acrylamide (NIPAM). They used various sizes of silica particles, ranging from 53 to 962 nm in diameter, as solids stabilizer. Suspension polymerizations were successful for the silica particles of diameter <500 nm. Similar work was reported by Wang and coworkers. [103]. [Pg.40]

The dispersion process produces particles in the range of 0.5-10 pm. Monomer, initiator and stabilizer are dissolved in an organic medium. The initiator is soluble in monomer droplets stabilized by the surfactant. Polymerization takes place at this point. Polymer droplets are not soluble in the organic medium and therefore form a precipitate. Aggregation is avoided by the stabilizer. Suspension polymerization produces micrometersized particles (50-500 pm). The monomer is dispersed in water with a stabilizer. The initiator is soluble in the monomer phase where polymerization occurs. [Pg.74]

In a suspension polymerization, monomer is suspended ia water as 0.1—5 mm droplets, stabilized by protective coUoids or suspending agents. Polymerization is initiated by a monomer-soluble initiator and takes place within the monomer droplets. The water serves as both the dispersion medium and a heat-transfer agent. Particle size is controlled primarily by the rate of agitation and the concentration and type of suspending aids. The polymer is obtained as small beads of about 0.1—5 mm in diameter, which are isolated by filtration or centrifugation. [Pg.268]

Hydroxyhydroquinone and pyrogaHol can be used for lining reactors for vinyl chloride suspension polymerization to prevent formation of polymer deposits on the reactor walls (98). Hydroxyhydroquinone and certain of its derivatives are useful as auxiUary developers for silver haUde emulsions in photographic material their action is based on the dye diffusion-transfer process. The transferred picture has good contrast and stain-free highlights (99). 5-Acylhydroxyhydroquinones are useful as stabilizer components for poly(alkylene oxide)s (100). [Pg.381]

Emulsion Polymerization. When the U.S. supply of natural mbber from the Far East was cut off in World War II, the emulsion polymerization process was developed to produce synthetic mbber. In this complex process, the organic monomer is emulsified with soap in an aqueous continuous phase. Because of the much smaller (<0.1 jira) dispersed particles than in suspension polymerization and the stabilizing action of the soap, a proper emulsion is stable, so agitation is not as critical. In classical emulsion polymerization, a water-soluble initiator is used. This, together with the small particle size, gives rise to very different kinetics (6,21—23). [Pg.437]

Suspension Polymerization. At very low levels of stabilizer, eg, 0.1 wt %, the polymer does not form a creamy dispersion that stays indefinitely suspended in the aqueous phase but forms small beads that setde and may be easily separated by filtration (qv) (69). This suspension or pearl polymerization process has been used to prepare polymers for adhesive and coating appHcations and for conversion to poly(vinyl alcohol). Products in bead form are available from several commercial suppHers of PVAc resins. Suspension polymerizations are carried out with monomer-soluble initiators predominantly, with low levels of stabilizers. Suspension copolymerization processes for the production of vinyl acetate—ethylene bead products have been described and the properties of the copolymers determined (70). Continuous tubular polymerization of vinyl acetate in suspension (71,72) yields stable dispersions of beads with narrow particle size distributions at high yields. [Pg.465]

Suspension Polymerization. Suspension polymerization is carried out in small droplets of monomer suspended in water. The monomer is first finely dispersed in water by vigorous agitation. Suspension stabiUzers act to minimize coalescence of droplets by forming a coating at the monomer—water interface. The hydrophobic—hydrophilic properties of the suspension stabiLizers ate key to resin properties and grain agglomeration (89). [Pg.502]

Suspension polymerization produces beads of plastic for styrene, methyl methacrviaie. viny l chloride, and vinyl acetate production. The monomer, in which the catalyst must be soluble, is maintained in droplet fonn suspended in water by agitation in the presence of a stabilizer such as gelatin each droplet of monomer undergoes bulk polymerization. In emulsion polymerization, ihe monomer is dispersed in water by means of a surfactant to form tiny particles held in suspension I micellcsK The monomer enters the hydrocarbon part of the micelles for polymerization by a... [Pg.277]

Among the various suspension systems mentioned, the details of oil-inwater (o/w) suspension polymerizations are fully known. The criteria of droplet formation, droplet stabilization, and droplet hardening, as will be discussed for the o/w suspension system, can apply equally to the preparation of beaded polymer particles in w/o systems. [Pg.4]

Beaded polymeric supports are produced by a two-phase suspension polymerization in which microdrops of a monomer solution are directly converted to the corresponding microbeads. The size of a microdroplet is usually determined by a number of interrelated manufacturing parameters, which include the reactor design, the rate of stirring, the ratio of the monomer phase to water, the viscosity of both phases, and the type and concentration of the droplet stabilizer. [Pg.6]

Beaded acrylamide resins (28) are generally produced by w/o inverse-suspension polymerization. This involves the dispersion of an aqueous solution of the monomer and an initiator (e.g., ammonium peroxodisulfates) with a droplet stabilizer such as carboxymethylcellulose or cellulose acetate butyrate in an immiscible liquid (the oil phase), such as 1,2-dichloroethane, toluene, or a liquid paraffin. A polymerization catalyst, usually tetramethylethylenediamine, may also be added to the monomer mixture. The polymerization of beaded acrylamide resin is carried out at relatively low temperatures (20-50°C), and the polymerization is complete within a relatively short period (1-5 hr). The polymerization of most acrylamides proceeds at a substantially faster rate than that of styrene in o/w suspension polymerization. The problem with droplet coagulation during the synthesis of beaded polyacrylamide by w/o suspension polymerization is usually less critical than that with a styrene-based resin. [Pg.9]

A key factor in doing a successful suspension polymerization is the composition of the aqueous phase or stabilizer. Too much stabilizer results in emulsion polymerization, which produces small particles (less than 1 /cm). Too little stabilizer results in bulk polymerization. For the production of GPC gels, the ratio of aqueous phase to organic phase should be about 2 1. [Pg.163]

Each of the PLgel individual pore sizes is produced hy suspension polymerization, which yields a fairly diverse range of particle sizes. For optimum performance in a chromatographic column the particle size distribution of the beads should be narrow this is achieved by air classification after the cross-linked beads have been washed and dried thoroughly. Similarly, for consistent column performance, the particle size distribution is critical and is another quality control aspect where both the median particle size and the width of the distribution are specified. The efficiency of the packed column is extremely sensitive to the median particle size, as predicted by the van Deemter equation (4), whereas the width of the particle size distribution can affect column operating pressure and packed bed stability. [Pg.352]

The suspension polymerization of 65% acrylamide aqueous solution dispersed in n-hexane (aqueous phase -hexane = 1 5) in the presence of a stabilizer (sorbitan monostearate, 1.4% with respect to -hexane) and an initiator (2,2 -azo-bis-A/, A/ -dimethyleneisobutylamide chloride) carried out at 65°C for 3 h, with subsequent holding at 110°C, yields a powdered product with the granule size of 0.5 mm, while the addition of Na2S04... [Pg.67]

Various novel applications in biotechnology, biomedical engineering, information industry, and microelectronics involve the use of polymeric microspheres with controlled size and surface properties [1-31. Traditionally, the polymer microspheres larger than 100 /urn with a certain size distribution have been produced by the suspension polymerization process, where the monomer droplets are broken into micron-size in the existence of a stabilizer and are subsequently polymerized within a continuous medium by using an oil-soluble initiator. Suspension polymerization is usually preferred for the production of polymeric particles in the size range of 50-1000 /Ltm. But, there is a wide size distribution in the product due to the inherent size distribution of the mechanical homogenization and due to the coalescence problem. The size distribution is measured with the standard deviation or the coefficient of variation (CV) and the suspension polymerization provides polymeric microspheres with CVs varying from 15-30%. [Pg.189]

In suspension polymerization, the monomer gets dispersed in a liquid, such as water. Mechanical agitation keeps the monomer dispersed. Initiators should be soluble in the monomer. Stabilizers, such as talc or polyvinyl alcohol, prevent polymer chains from adhering to each other and keep the monomer dispersed in the liquid medium. The final polymer appears in a granular form. [Pg.316]

Hacroreticular resins are prepared by suspension polymerization of, for example, styrene-divinylbenzene copolymers in the presence of a substance which is a good solvent for the sononer but a poor swelling agent for the polymer [178-180]. Each resin bead is formed from many microbeads joined together during the polymerization process to create a network of holes and 7 channels. This results in greater mechanical stability,... [Pg.906]

In suspension polymerization, the monomer is agitated in a solvent to form droplets, and then stabilized through the use of surfactants to form micelles. The added initiator is soluble in the solvent such that the reaction is initiated at the skin of the micelle. Polymerization starts at the interface and proceeds towards the center of the droplet. Polystyrene and polyvinyl chloride are often produced via suspension polymerization processes. [Pg.56]

Suspension polymerization. In this process, monomers and initiator are suspended as droplets in water or a similar medium. The droplets are maintained in suspension by agitation (active mixing). Sometimes a water-soluble polymer like methylcellulose or a finely divided clay is added to help stabilize or maintain the droplets. After formation, the polymer, is separated and dried. This route is used commercially for vinyl-type polymers such as polyvinyl chloride and polystyrene. [Pg.329]

In the suspension polymerization process, the autoclave reactor is filled with water. PVA, polyvinyl alcohol is the dispersing agent that helps stabilize the suspension. Lauroyl peroxide is the free radical catalyst that starts it all off. The reaction temperature is around 130°F, and the process takes 10—12 hours per batch, with 95% conversion. [Pg.350]

Dispersion polymerization involves an initially homogeneous system of monomer, organic solvent, initiator, and particle stabilizer (usually uncharged polymers such as poly(A-vinyl-pyrrolidinone) and hydroxypropyl cellulose). The system becomes heterogeneous on polymerization because the polymer is insoluble in the solvent. Polymer particles are stabilized by adsorption of the particle stabilizer [Yasuda et al., 2001], Polymerization proceeds in the polymer particles as they absorb monomer from the continuous phase. Dispersion polymerization usually yields polymer particles with sizes in between those obtained by emulsion and suspension polymerizations—about 1-10 pm in diameter. For the larger particle sizes, the reaction characteristics are the same as in suspension polymerization. For the smallest particle sizes, suspension polymerization may exhibit the compartmentalized kinetics of emulsion polymerization. [Pg.298]


See other pages where Stabilization suspension polymerization is mentioned: [Pg.192]    [Pg.1613]    [Pg.1613]    [Pg.5752]    [Pg.192]    [Pg.1613]    [Pg.1613]    [Pg.5752]    [Pg.142]    [Pg.204]    [Pg.348]    [Pg.419]    [Pg.490]    [Pg.440]    [Pg.440]    [Pg.490]    [Pg.239]    [Pg.5]    [Pg.163]    [Pg.350]    [Pg.439]    [Pg.67]    [Pg.67]    [Pg.68]    [Pg.205]    [Pg.90]    [Pg.90]    [Pg.82]    [Pg.174]    [Pg.346]    [Pg.2]    [Pg.186]    [Pg.298]    [Pg.367]   
See also in sourсe #XX -- [ Pg.192 ]

See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Graft copolymers, polymeric surfactants suspension stabilization

Polymeric stabilization

Polymeric stabilizers)

Polymeric surfactants for stabilization of suspensions

Polymeric surfactants suspension stabilization

Polymerization Stabilizer

Polymerization suspension polymerizations

Stabilization suspensions

Stabilizing suspensions

Suspension polymerization

Suspension polymerization thermal stability

Suspension stabilizer

© 2024 chempedia.info